[en] Field measurements by eddy correlation (EC) indicate an average uptake of 0.6 g CO2 m(-2) d(-1) by the ice-covered western Weddell Sea in December 2004. At the same time, snow that covers ice floes of the western Weddell Sea becomes undersaturated with CO2 relative to the atmosphere during early summer. Gradients of CO2 from the ice to the atmosphere do not support significant diffusive fluxes and are not strong enough to explain the observed CO2 deposition. We hypothesize that the transport of air through the snow pack is controlled by turbulence and that undersaturation of CO2 is caused by biological productivity at the ice-snow and snow-atmosphere interface. The total carbon uptake by the multi-year ice zone of the western Weddell Sea in December could have been as high as 6.6 Tg C y(-1).
Disciplines :
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Zemmelink, H. J.
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Tison, Jean-Louis
Hintsa, E. J.
Houghton, L.
Dacey, J. W. H.
Langue du document :
Anglais
Titre :
CO2 deposition over the multi-year ice of the western Weddell Sea
Date de publication/diffusion :
13 juillet 2006
Titre du périodique :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Maison d'édition :
Amer Geophysical Union, Washington, Etats-Unis - Washington
Volume/Tome :
33
Fascicule/Saison :
13
Peer reviewed :
Peer reviewed vérifié par ORBi
Intitulé du projet de recherche :
Belcanto
Organisme subsidiant :
UE - Union Européenne NERC - Natural Environment Research Council BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
Commentaire :
An edited version of this paper was published by AGU. Copyright 2006 American Geophysical Union
Albert, M. R., and E. F. Shultz (2002), Snow and firn properties and air-snow transport processes at Summit, Greenland, Atmos. Environ., 36, 2789-2797.
Anderson, L. G., E. Falck, E. P. Jones, S. Jutterström, and J. H. Swift (2004), Enhanced uptake of atmospheric CO2 during freezing of seawater: A field study in Storfjorden, Svalbard, J. Geophys. Res., 109, C06004, doi:10.1029/2003JC002120.
Arrigo, K. R., D. L. Worthen, M. P. Lizotte, P. Dixon, and G. Dieckmann (1997), Primary production in Antarctic sea ice, Science, 276, 394-397.
Edson, J. B., A. A. Hinton, K. E. Prada, J. E. Hare, and C. W. Fairall (1998), Direct covariance flux estimates from mobile platforms at sea, J. Atmos. Oceanic Technol., 15, 547-562.
Fairall, C. W., J. E. Hare, J. B. Edson, and W. R. McGillis (2000), Parameterization and micrometeorological measurement of air-sea gas transfer, Boundary Layer Metcorol., 96, 63-105.
Gloersen, P., W. J. Campbell, D. J. Cavalieri, J. C. Comiso, C. L. Parkinson, and H. J. Zwally (1992), Arctic and Antarctic Sea Ice, 1978-1987: Satellite Passive-Microwave Observations and Analysis, NASA SP-511, 290 pp.
Hintsa, E. J., J. W. H. Dacey, W. R. McGillis, J. B. Edson, C. J. Zappa, and H. J. Zemmelink (2004), Sea-to-air fluxes from measurements of the atmospheric gradient of dimethylsulfide and comparison with simultaneous relaxed eddy accumulation measurements, J. Geophys. Res., 109, CO 1026, doi:10.1029/2002JC001617.
Hoppema, M., E. Fahrbach, M. Stoll, and H. de Baar (1999), Annual uptake of atmospheric CO2 by the Weddell Sea derived from a surface layer balance, including estimations of entrainment and new production, J. Mar. Syst., 18, 219-234.
Schmid, H. P. (1994), Source areas for scalars and scalar fluxes, Boundary Layer Meteorol., 67, 293-318.
Semiletov, I., A. Makshtas, S.-I. Akasofu, and E. L. Andreas (2004), Atmospheric CO2 balance: The role of Arctic sea ice, Geophys. Res. Lett., 31, L05121, doi:10.1029/2003GL017996.
Takagi, K., M. Nomura, D. Ashiya, H. Takahashi, K. Sasa, Y. Fujinuma, H. Shibata, Y. Akibayashi, and T. Koike (2005), Dynamic carbon dioxide exchange through snowpack by wind-driven mass transfer in a conifer-broadleaf mixed forest in northernmost Japan, Global Biogeochem. Cycles, 19, GB2012, doi:10.1029/2004GB002272.
Takahashi, T., et al. (2002), Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep Sea Res., Part II, 49, 1601-1622.
Thomas, D. N., and G. S. Dieckmann (2002), Antarctic sea ice a habitat for extremophiles, Science, 295, 641-644.
Thomas, D. N., and S. Papadimitriou (2003), Biogeochemisry of sea ice, in Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Geology, edited by D. N. Thomas and G. S. Dieckmann, pp. 267-302, Blackwell Sci., Malden, Mass.
Tréguer, P., and P. Pondaven (2002), Climatic changes and the carbon cycle in the Southern Ocean: A step forward, Deep Sea Res., Part II, 49, 1597-1600.
Webb, E. K., G. I. Pearman, and R. Leuning (1980), Corrections of flux measurements for density effects due to heat and water vapour transfer, Q. J. R. Meteorol. Soc., 106, 85-100.
Zemmelink, H. J., W. W. C. Gieskes, W. Klaassen, W. J. Beukema, H. W. de Groot, H. J. W. de Baar, E. J. Hintsa, W. R. McGillis, and J. W. H. Dacey (2004a), Relaxed eddy accumulation measurements of the sea-to-air transfer of dimethylsulfide over the northeastern Pacific, J. Geophys. Res., 109, C01025, doi:10.1029/2002JC001616.
Zemmelink, H. J., J. W. H. Dacey, E. J. Hintsa, W. R. McGillis, W. W. C. Gieskes, W. Klaassen, H. W. de Groot, and H. J. W. de Baar (2004b), Fluxes and gas transfer rates of the biogenic trace gas DMS derived from atmospheric gradients, J. Geophys. Res., 109, C08S10, doi:10.1029/2003JC001795.
Zemmelink, H., L. Houghton, J. Dacey, A. Worby, and P. Liss (2005), Emission of dimethylsulfide from Weddell Sea leads, Geophys. Res. Lett., 32, L23610, doi:10.1029/2005GL024242.