[en] Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2alpha, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2alpha. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Denamur, Sophie
Boland, Lidvine
Beyaert, Maxime
Verstraeten, Sandrine L.
Fillet, Marianne ; Université de Liège > Département de pharmacie > Analyse des médicaments
Tulkens, Paul M.
Bontemps, Francoise
Mingeot-Leclercq, Marie-Paule
Language :
English
Title :
Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum.
Publication date :
2016
Journal title :
Toxicology and Applied Pharmacology
ISSN :
0041-008X
eISSN :
1096-0333
Publisher :
Elsevier, Atlanta, United States - New York
Volume :
309
Pages :
24-36
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
Copyright (c) 2016 Elsevier Inc. All rights reserved.
An, W.G., Hwang, S.G., Trepel, J.B., Blagosklonny, M.V., Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 14 (2000), 1276–1283.
Baird, T.D., Wek, R.C., Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv. Nutr. 3 (2012), 307–321.
Bionda, C., Hadchity, E., Alphonse, G., Chapet, O., Rousson, R., Rodriguez-Lafrasse, C., Ardail, D., Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering. Free Radic. Biol. Med. 43 (2007), 681–694.
Carryn, S., Van Bambeke, F., Mingeot-Leclercq, M.P., Tulkens, P.M., Comparative intracellular (THP-1 macrophage) and extracellular activities of beta-lactams, azithromycin, gentamicin, and fluoroquinolones against Listeria monocytogenes at clinically relevant concentrations. Antimicrob. Agents Chemother. 46 (2002), 2095–2103.
Chauhan, D., Singh, A., Brahmandam, M., Podar, K., Hideshima, T., Richardson, P., Munshi, N., Palladino, M.A., Anderson, K.C., Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 111 (2008), 1654–1664.
Chen, Y.C., Chen, C.H., Hsu, Y.H., Chen, T.H., Sue, Y.M., Cheng, C.Y., Chen, T.W., Leptin reduces gentamicin-induced apoptosis in rat renal tubular cells via the PI3K-Akt signaling pathway. Eur. J. Pharmacol. 658 (2011), 213–218.
Curtin, J.F., Donovan, M., Cotter, T.G., Regulation and measurement of oxidative stress in apoptosis. J. Immunol. Methods 265 (2002), 49–72.
Dashzeveg, N., Yoshida, K., Cell death decision by p53 via control of the mitochondrial membrane. Cancer Lett. 367 (2015), 108–112.
Demasi, M., Simoes, V., Bonatto, D., Cross-talk between redox regulation and the ubiquitin-proteasome system in mammalian cell differentiation. Biochim. Biophys. Acta 1850 (2015), 1594–1606.
Denamur, S., Tyteca, D., Marchand-Brynaert, J., Van Bambeke, F., Tulkens, P.M., Courtoy, P.J., Mingeot-Leclercq, M.P., Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic. Free Radic. Biol. Med. 51 (2011), 1656–1665.
Denamur, S., Van Bambeke, F., Mingeot-Leclercq, M.P., Tulkens, P.M., Apoptosis induced by aminoglycosides in LLC-PK1 cells: comparative study of neomycin, gentamicin, amikacin, and isepamicin using electroporation. Antimicrob. Agents Chemother. 52 (2008), 2236–2238.
dos Santos, N.A., Carvalho Rodrigues, M.A., Martins, N.M., dos Santos, A.C., Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch. Toxicol. 86 (2012), 1233–1250.
El Assaad, W., Kozhaya, L., Araysi, S., Panjarian, S., Bitar, F.F., Baz, E., El Sabban, M.E., Dbaibo, G.S., Ceramide and glutathione define two independently regulated pathways of cell death initiated by p53 in Molt-4 leukaemia cells. Biochem. J. 376 (2003), 725–732.
El Mouedden, M., Laurent, G., Mingeot-Leclercq, M.P., Tulkens, P.M., Gentamicin-induced apoptosis in renal cell lines and embryonic rat fibroblasts. Toxicol. Sci. 56 (2000), 229–239.
El Mouedden, M., Laurent, G., Mingeot-Leclercq, M.P., Taper, H.S., Cumps, J., Tulkens, P.M., Apoptosis in renal proximal tubules of rats treated with low doses of aminoglycosides. Antimicrob. Agents Chemother. 44 (2000), 665–675.
Feng, Z., Zhang, H., Levine, A.J., Jin, S., The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 8204–8209.
Fillet, M., Bentires-Alj, M., Deregowski, V., Greimers, R., Gielen, J., Piette, J., Bours, V., Merville, M.P., Mechanisms involved in exogenous C2- and C6-ceramide-induced cancer cell toxicity. Biochem. Pharmacol. 65 (2003), 1633–1642.
Fillet, M., Van Heugen, J.C., Servais, A.C., De Graeve, J., Crommen, J., Separation, identification and quantitation of ceramides in human cancer cells by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 949 (2002), 225–233.
Giguere, C.J., Schnellmann, R.G., Limitations of SLLVY-AMC in calpain and proteasome measurements. Biochem. Biophys. Res. Commun. 371 (2008), 578–581.
Goni, F.M., Alonso, A., Sphingomyelinases: enzymology and membrane activity. FEBS Lett. 531 (2002), 38–46.
Green, D.R., Kroemer, G., Cytoplasmic functions of the tumour suppressor p53. Nature 458 (2009), 1127–1130.
Hannun, Y.A., Luberto, C., Ceramide in the eukaryotic stress response. Trends Cell Biol. 10 (2000), 73–80.
Heffernan-Stroud, L.A., Obeid, L.M., p53 and regulation of bioactive sphingolipids. Adv. Enzym. Regul. 51 (2011), 219–228.
Heinemeyer, W., Fischer, M., Krimmer, T., Stachon, U., Wolf, D.H., The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J. Biol. Chem. 272 (1997), 25200–25209.
Hohn, A., Jung, T., Grune, T., Pathophysiological importance of aggregated damaged proteins. Free Radic. Biol. Med. 71 (2014), 70–89.
Horibe, T., Matsui, H., Tanaka, M., Nagai, H., Yamaguchi, Y., Kato, K., Kikuchi, M., Gentamicin binds to the lectin site of calreticulin and inhibits its chaperone activity. Biochem. Biophys. Res. Commun. 323 (2004), 281–287.
Hu, J., Kholmukhamedov, A., Lindsey, C.C., Beeson, C.C., Jaeschke, H., Lemasters, J.J., Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: Protection by starch-desferal and minocycline. Free Radic. Biol. Med. 97 (2016), 418–426 http://dx.10.1016/j.freeradbiomed.2016.06.024. Epub 2016 Jun 23.
Jiang, H.Y., Wek, R.C., Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J. Biol. Chem. 280 (2005), 14189–14202.
Jiang, M., Wei, Q., Pabla, N., Dong, G., Wang, C.Y., Yang, T., Smith, S.B., Dong, Z., Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem. Pharmacol. 73 (2007), 1499–1510.
Jiang, M., Yi, X., Hsu, S., Wang, C.Y., Dong, Z., Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am. J. Physiol. Ren. Physiol. 287 (2004), F1140–F1147.
Ju, S.M., Pae, H.O., Kim, W.S., Kang, D.G., Lee, H.S., Jeon, B.H., Role of reactive oxygen species in p53 activation during cisplatin-induced apoptosis of rat mesangial cells. Eur. Rev. Med. Pharmacol. Sci. 18 (2014), 1135–1141.
Kim, S.S., Chae, H.S., Bach, J.H., Lee, M.W., Kim, K.Y., Lee, W.B., Jung, Y.M., Bonventre, J.V., Suh, Y.H., P53 mediates ceramide-induced apoptosis in SKN-SH cells. Oncogene 21 (2002), 2020–2028.
Kim, W.H., Kang, K.H., Kim, M.Y., Choi, K.H., Induction of p53-independent p21 during ceramide-induced G1 arrest in human hepatocarcinoma cells. Biochem. Cell Biol. 78 (2000), 127–135.
Kirkegaard, T., Jaattela, M., Lysosomal involvement in cell death and cancer. Biochim. Biophys. Acta 1793 (2009), 746–754.
Kisselev, A.F., Goldberg, A.L., Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol. 398 (2005), 364–378.
Kisselev, A.F., Callard, A., Goldberg, A.L., Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J. Biol. Chem. 281 (2006), 8582–8590.
Kitatani, K., Idkowiak-Baldys, J., Hannun, Y.A., The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal. 20 (2008), 1010–1018.
Komarov, P.G., Komarova, E.A., Kondratov, R.V., Christov-Tselkov, K., Coon, J.S., Chernov, M.V., Gudkov, A.V., A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285 (1999), 1733–1737.
Kruse, J.P., Gu, W., Modes of p53 regulation. Cell 137 (2009), 609–622.
Kubota, C., Torii, S., Hou, N., Saito, N., Yoshimoto, Y., Imai, H., Takeuchi, T., Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J. Biol. Chem. 285:1 (2010), 667–674 http://dx.10.1074/jbc.M109.053058, Epub 2009 Oct 22, PMID: 19850931.
Laurent, G., Carlier, M.B., Rollman, B., Van Hoof, F., Tulkens, P., Mechanism of aminoglycoside-induced lysosomal phospholipidosis: in vitro and in vivo studies with gentamicin and amikacin. Biochem. Pharmacol. 31 (1982), 3861–3870.
Lee, M.H., Hyun, D.H., Jenner, P., Halliwell, B., Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J. Neurochem. 78 (2001), 32–41.
Lopez-Novoa, J.M., Quiros, Y., Vicente, L., Morales, A.I., Lopez-Hernandez, F.J., New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 79 (2011), 33–45.
Lu, Z., Hunter, T., Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle 9 (2010), 2342–2352.
Martinez-Salgado, C., Rodriguez-Barbero, A., Eleno, N., Lopez-Novoa, J.M., Gentamicin induces Jun-AP1 expression and JNK activation in renal glomeruli and cultured mesangial cells. Life Sci. 77 (2005), 2285–2298.
Mather, M., Rottenberg, H., Polycations induce the release of soluble intermembrane mitochondrial proteins. Biochim. Biophys. Acta 1503 (2001), 357–368.
Meek, D.W., Regulation of the p53 response and its relationship to cancer. Biochem. J. 469 (2015), 325–346.
Mingeot-Leclercq, M.P., Laurent, G., Tulkens, P.M., Biochemical mechanism of aminoglycoside-induced inhibition of phosphatidylcholine hydrolysis by lysosomal phospholipases. Biochem. Pharmacol. 37 (1988), 591–599.
Moestrup, S.K., Cui, S., Vorum, H., Bregengard, C., Bjorn, S.E., Norris, K., Gliemann, J., Christensen, E.I., Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J. Clin. Invest. 96 (1995), 1404–1413.
Molitoris, B.A., Dagher, P.C., Sandoval, R.M., Campos, S.B., Ashush, H., Fridman, E., Brafman, A., Faerman, A., Atkinson, S.J., Thompson, J.D., Kalinski, H., Skaliter, R., Erlich, S., Feinstein, E., siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J. Am. Soc. Nephrol. 20 (2009), 1754–1764.
Mullen, T.D., Obeid, L.M., Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anti Cancer Agents Med. Chem. 12 (2012), 340–363.
Nadasdy, T., Laszik, Z., Blick, K.E., Johnson, L.D., Silva, F.G., Proliferative activity of intrinsic cell populations in the normal human kidney. J. Am. Soc. Nephrol. 4 (1994), 2032–2039.
Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., Yuan, J., Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403 (2000), 98–103.
Naujokat, C., Berges, C., Hoh, A., Wieczorek, H., Fuchs, D., Ovens, J., Miltz, M., Sadeghi, M., Opelz, G., Daniel, V., Proteasomal chymotrypsin-like peptidase activity is required for essential functions of human monocyte-derived dendritic cells. Immunology 120 (2007), 120–132.
Nikoletopoulou, V., Markaki, M., Palikaras, K., Tavernarakis, N., Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta 1833 (2013), 3448–3459.
Oyadomari, S., Yun, C., Fisher, E.A., Kreglinger, N., Kreibich, G., Oyadomari, M., Harding, H.P., Goodman, A.G., Harant, H., Garrison, J.L., Taunton, J., Katze, M.G., Ron, D., Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload. Cell 126 (2006), 727–739.
Ozaki, N., Matheis, K.A., Gamber, M., Feidl, T., Nolte, T., Kalkuhl, A., Deschl, U., Identification of genes involved in gentamicin-induced nephrotoxicity in rats–a toxicogenomic investigation. Exp. Toxicol. Pathol. 62 (2010), 555–566.
Pant, V., Lozano, G., Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 28 (2014), 1739–1751.
Peyrou, M., Cribb, A.E., Effect of endoplasmic reticulum stress preconditioning on cytotoxicity of clinically relevant nephrotoxins in renal cell lines. Toxicol. In Vitro 21 (2007), 878–886.
Peyrou, M., Hanna, P.E., Cribb, A.E., Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol. Sci. 99 (2007), 346–353.
Quiros, Y., Vicente-Vicente, L., Morales, A.I., Lopez-Novoa, J.M., Lopez-Hernandez, F.J., An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin. Toxicol. Sci. 119 (2011), 245–256.
Rebillard, A., Rioux-Leclercq, N., Muller, C., Bellaud, P., Jouan, F., Meurette, O., Jouan, E., Vernhet, L., Le Quement, C., Carpinteiro, A., Schenck, M., Lagadic-Gossmann, D., Gulbins, E., Dimanche-Boitrel, M.T., Acid sphingomyelinase deficiency protects from cisplatin-induced gastrointestinal damage. Oncogene 27 (2008), 6590–6595.
Sanchez-Perez, Y., Morales-Barcenas, R., Garcia-Cuellar, C.M., Lopez-Marure, R., Calderon-Oliver, M., Pedraza-Chaverri, J., Chirino, Y.I., The alpha-mangostin prevention on cisplatin-induced apoptotic death in LLC-PK1 cells is associated to an inhibition of ROS production and p53 induction. Chem. Biol. Interact. 188 (2010), 144–150.
Sandoval, R.M., Molitoris, B.A., Gentamicin traffics retrograde through the secretory pathway and is released in the cytosol via the endoplasmic reticulum. Am. J. Physiol. Ren. Physiol. 286 (2004), F617–F624.
Sastrasinh, M., Knauss, T.C., Weinberg, J.M., Humes, H.D., Identification of the aminoglycoside binding site in rat renal brush border membranes. J. Pharmacol. Exp. Ther. 222 (1982), 350–358.
Sawada, M., Nakashima, S., Kiyono, T., Nakagawa, M., Yamada, J., Yamakawa, H., Banno, Y., Shinoda, J., Nishimura, Y., Nozawa, Y., Sakai, N., p53 regulates ceramide formation by neutral sphingomyelinase through reactive oxygen species in human glioma cells. Oncogene 20 (2001), 1368–1378.
Servais, H., Jossin, Y., Van Bambeke, F., Tulkens, P.M., Mingeot-Leclercq, M.P., Gentamicin causes apoptosis at low concentrations in renal LLC-PK1 cells subjected to electroporation. Antimicrob. Agents Chemother. 50 (2006), 1213–1221.
Servais, H., Van Der, S.P., Thirion, G., Van der, E.G., Van Bambeke, F., Tulkens, P.M., Mingeot-Leclercq, M.P., Gentamicin-induced apoptosis in LLC-PK1 cells: involvement of lysosomes and mitochondria. Toxicol. Appl. Pharmacol. 206 (2005), 321–333.
Tang, Y., Zhao, W., Chen, Y., Zhao, Y., Gu, W., Acetylation is indispensable for p53 activation. Cell 133 (2008), 612–626.
Teske, B.F., Wek, S.A., Bunpo, P., Cundiff, J.K., McClintick, J.N., Anthony, T.G., Wek, R.C., The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol. Biol. Cell 22 (2011), 4390–4405.
Tulkens, P., Trouet, A., The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rat fibroblasts. Biochem. Pharmacol. 27 (1978), 415–424.
Villamil Giraldo, A.M., Appelqvist, H., Ederth, T., Ollinger, K., Lysosomotropic agents: impact on lysosomal membrane permeabilization and cell death. Biochem. Soc. Trans. 42 (2014), 1460–1464.
Walker, P.D., Shah, S.V., Gentamicin enhanced production of hydrogen peroxide by renal cortical mitochondria. Am. J. Phys. 253 (1987), C495–C499.
Wan, C., Ma, X., Shi, S., Zhao, J., Nie, X., Han, J., Xiao, J., Wang, X., Jiang, S., Jiang, J., Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis. Toxicol. Appl. Pharmacol. 281 (2014), 294–302.
Wang, X., Yen, J., Kaiser, P., Huang, L., Regulation of the 26S proteasome complex during oxidative stress. Sci. Signal., 3, 2010, ra88.
Wu, H., Lozano, G., NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J. Biol. Chem. 269 (1994), 20067–20074.
Xiao, Z., Shan, J., Li, C., Luo, L., Lu, J., Li, S., Long, D., Li, Y., Mechanisms of cyclosporine-induced renal cell apoptosis: a systematic review. Am. J. Nephrol. 37 (2013), 30–40.
Yang, J., Duerksen-Hughes, P.J., Activation of a p53-independent, sphingolipid-mediated cytolytic pathway in p53-negative mouse fibroblast cells treated with N-methyl-N-nitro-N-nitrosoguanidine. J. Biol. Chem. 276 (2001), 27129–27135.
Yang, Y., Ikezoe, T., Saito, T., Kobayashi, M., Koeffler, H.P., Taguchi, H., Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Sci. 95 (2004), 176–180.
Yano, T., Itoh, Y., Matsuo, M., Kawashiri, T., Egashira, N., Oishi, R., Involvement of both tumor necrosis factor-alpha-induced necrosis and p53-mediated caspase-dependent apoptosis in nephrotoxicity of cisplatin. Apoptosis 12 (2007), 1901–1909.
Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., Tohyama, M., Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276 (2001), 13935–13940.
Yu, J., Tiwari, S., Steiner, P., Zhang, L., Differential apoptotic response to the proteasome inhibitor Bortezomib [VELCADE, PS-341] in Bax-deficient and p21-deficient colon cancer cells. Cancer Biol. Ther. 2 (2003), 694–699.
Zeidan, Y.H., Hannun, Y.A., The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr. Mol. Med. 10 (2010), 454–466.
Zeng, F., Yu, X., Sherry, J.P., Dixon, B., Duncker, B.P., Bols, N.C., The p53 inhibitor, pifithrin-alpha, disrupts microtubule organization, arrests growth, and induces polyploidy in the rainbow trout gill cell line, RTgill-W1. Comp Biochem. Physiol C. Toxicol. Pharmacol. 179 (2016), 1–10.
Zhang, L., Hu, J.J., Gong, F., MG132 inhibition of proteasome blocks apoptosis induced by severe DNA damage. Cell Cycle 10 (2011), 3515–3518.