Beven, K. & P. Germann (2013). Macropores and water flow in soils revisited. Water Resour. Res. 49(6), 3071-3092.
Brolsma, R. J. & M. F. P. Bierkens (2007). Groundwater-soil water-vegetation dynamics in a temperate forest ecosystem along a slope. Water Resour. Res. 43(1), W01414.
Caylor, K. K., T. M. Scanlon, & I. Rodriguez-Iturbe (2009). Ecohydrological optimization of pattern and processes in water-limited ecosystems: a trade-off-based hypothesis. Water Resour. Res. 45(8), W08407.
del Jesus, M., R. Foti, A. Rinaldo, & I. Rodriguez-Iturbe (2012). Maximum entropy production, carbon assimilation, and the spatial organization of vegetation in river basins. Proceedings of the National Academy of Sciences 109(51), 20837-20841.
Hergarten, S., G. Winkler, & S. Birk (2014). Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns. Hydrol. Earth Syst. Sci. 18(10), 4277-4288.
Kleidon, A. (2009). Nonequilibrium thermodynamics and maximum entropy production in the earth system. Naturwissenschaften 96, 653-677.
Kleidon, A. & M. Renner (2013). Thermodynamic limits of hydrologic cycling within the earth system: concepts, estimates and implications. Hydrol. Earth Syst. Sci. 17(7), 2873-2892.
Kleidon, A. & S. Schymanski (2008). Thermodynamics and optimality of thewater budget on land: Areview. Geophys. Res. Lett. 35, L20404.
Kleidon, A., E. Zehe, U. Ehret, & U. Scherer (2013). Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale. Hydrol. Earth Syst. Sci. 17(1), 225-251.
Lorenz, R. D., J. I. Lunine, P. G. Withers, & C. P. McKay (2001). Titan, mars and earth: Entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415-418.
Noguchi, S., Y. Tsuboyama, R. C. Sidle, & I. Hosoda (1999). Morphological characteristics of macropores and the distribution of preferential flow pathways in a forested slope segment. Soil Sci. Soc. Am. J. 63(5), 1413-1423.
Paulus, R., B. J. Dewals, S. Erpicum, M. Pirotton, & P. Archambeau (2013). Innovative modelling of 3d unsaturated flow in porous media by coupling independent models for vertical and lateral flows. Journal of Computational and Applied Mathematics 246, 38-51. Fifth International Conference on Advanced COmputational Methods in ENgineering (ACOMEN 2011).
Porada, P., A. Kleidon, & S. J. Schymanski (2011). Entropy production of soil hydrological processes and its maximisation. Earth Syst. Dyn. 2(2), 179-190.
Porporato, A., F. Laio, L. Ridolfi, & I. Rodriguez-Iturbe (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: III. Vegetation water stress. Adv. Water Resour. 24(7), 725-744.
Rinaldo, A., I. Rodriguez-Iturbe, R. Rigon, R. L. Bras, E. Ijjasz-Vasquez, &A.Marani (1992). Minimum energy and fractal structures of drainage networks. Water Resour. Res. 28(9), 2183-2195.
Rodriguez-Iturbe, I., P. D’Odorico, & L. Porporato, A. and Ridolfi (1999). On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour. Res. 35(12), 3709-3722.
Rodriguez-Iturbe, I., A. Rinaldo, R. Rigon, R. L. Bras, E. Ijjasz-Vasquez, &A. Marani (1992). Fractal structures as least energy patterns: The case of river networks. Geophys. Res. Lett. 19(9), 889-892.
Savenije, H. H. G. (2010). HESS Opinions "Topography driven conceptual modelling (FLEX-topo)". Hydrol. Earth Syst. Sci. 14(12), 2681-2692. http://www.hydrolearth- syst-sci.net/14/2681/2010/.
Schymanski, S. J., M. Sivapalan, M. L. Roderick, L. B. Hutley, & J. Beringer (2009). An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resour. Res. 45(1), W01412.
Uhlenbrook, S. (2006). Catchment hydrology - a science in which all processes are preferential. Hydrological Processes 20(16), 3581-3585.
van Schaik, N. L. M. B., S. Schnabel, & V. G. Jetten (2008). The influence of preferential flow on hillslope hydrology in a semi-arid watershed (in the spanish dehesas). Hydrol. Processes 22(18), 3844-3855.
Wang, J. & R. L. Bras (2011). A model of evapotranspiration based on the theory of maximum entropy production. Water Resour. Res. 47(3), W03521.
Westhoff, M., S. Erpicum, P. Archambeau, M. Pirotton, E. Zehe, & B. Dewals (2016). Experimental proof that the effective soil hydraulic conductivity can be predicted with the maximum power principle. in preparation.
Westhoff, M.C. & E. Zehe (2013). Maximumentropy production: can it be used to constrain conceptual hydrological models? Hydrol. Earth Syst. Sci. 17(8), 3141-3157.
Westhoff, M. C., E. Zehe, & S. J. Schymanski (2014). Importance of temporal variability for hydrological predictions based on the maximum entropy production principle. Geophys. Res. Lett. 41(1), 67-73.
Wienhöfer, J., K. Germer, F. Lindenmaier, A. Färber, & E. Zehe (2009). Applied tracers for the observation of subsurface stormflow at the hillslope scale. Hydrol. Earth Syst. Sci. 13(7), 1145-1161.
Zehe, E., T. Blume, & G. Blöschl (2010). The principle of ‘maximum energy dissipation’: a novel thermodynamic perspective on rapid water flow in connected soil structures. Phil. Trans. R. Soc. B 365(1545), 1377-1386.
Zehe, E., U. Ehret, T. Blume, A. Kleidon, U. Scherer, & M. Westhoff (2013). A thermodynamic approach to link self-organization, preferential flow and rainfall-runoff behaviour. Hydrol. Earth Syst. Sci. 17(11), 4297-4322.