[en] Abstract Significant amounts of waste sludge and rejects are generated by pulp and paper mills, and stricter environmental regulations have made waste handling a global challenge. Thermochemical conversion of mechanically dewatered by-products is expensive and inefficient due to their high moisture content; therefore drying is a vital unit operation in waste management. This paper reports results from drying of light coarse fiber reject in a bench-scale cyclone that allows changes in geometry. For the sake of comparison, convective fixed-bed drying tests were also performed. The results showed that the drying rate in the cyclone was hundreds of times higher than in the fixed-bed. For cyclone drying, the inlet air velocity was the most important factor in both determining the drying rate and residence time of the material. This led to the hypothesis that grinding of the reject particles due to particle-wall and particle-particle collisions play a crucial role in enhancing the efficiency of heat and mass transfer. In addition to inlet air velocity, cyclone geometry was the main factor that determined particle residence time, as drying air temperature mainly determined drying rate.
Disciplines :
Agriculture & agronomy Environmental sciences & ecology Chemical engineering
Author, co-author :
Grimm, Alejandro; Swedish University of Agricultural Sciences - SLU
Elustondo, Diego; Luleå University of Technology
Mäkelä, Mikko; Swedish University of Agricultural Sciences - SLU
Segerström, Markus; Swedish University of Agricultural Sciences - SLU
Kalén, Gunnar; Swedish University of Agricultural Sciences - SLU
Fraikin, Laurent ; Université de Liège > Department of Chemical Engineering > Génie chimique - Procédés et développement durable
Léonard, Angélique ; Université de Liège > Department of Chemical Engineering > Génie chimique - Procédés et développement durable
Larsson, Sylvia H.; Swedish University of Agricultural Sciences - SLU
Language :
English
Title :
Drying recycled fiber rejects in a bench-scale cyclone: Influence of device geometry and operational parameters on drying mechanisms
Bajpai, P., Management of Pulp and Paper Mill Waste. 2015, Springer International Publishing, Switzerland, 10.1007/978-3-319-11788-1.
Lehto, J.T., Alén, R.J., Chemical pretreatments of wood chips prior to alkaline pulping - A review of pretreatment alternatives, chemical aspects of the resulting liquors, and pulping outcomes. Bioresources 10 (2015), 8604–8656, 10.15376/biores.10.4.Lehto.
Blanco, A., Negro, C., Monte, M.C., Fuente, H., Tijero, J., The challenges of sustainable papermaking. Environ. Sci. Technol. 38 (2004), 414A–420A, 10.1021/es040654y.
Monte, M.C., Fuente, E., Blanco, A., Negro, C., Waste management from pulp and paper production in the European Union. Waste Manag. 29 (2009), 293–308, 10.1016/j.wasman.2008.02.002.
Mason, L.G., Focus on Hazardous Materials research, Hauppauge. 2006, Nova Science Publishers, New York (ISBN-13: 978-1-60021-452-3).
Stoica, A., Sandberg, M., Holby, O., Energy use and recovery strategies within wastewater treatment and sludge handling at pulp and paper mills. Bioresour. Technol. 100 (2009), 3497–3505, 10.1016/j.biortech.2009.02.041.
Ouadi, M., Brammer, J., Hornung, A., Kay, M., Power to waste. TAPPI J. 11 (2012), 55–64.
Ouadi, M., Brammer, J.G., Kay, M., Hornung, A., Fixed bed downdraft gasification of paper industry wastes. Appl. Energy 103 (2013), 692–699, 10.1016/j.apenergy.2012.10.038.
Meyer, T., Edwards, E.A., Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res. 65 (2014), 321–349, 10.1016/j.watres.2014.07.022.
Faubert, P., Barnabé, S., Bouchard, S., Côté, R., Villeneuve, C., Pulp and paper mill sludge management practices: what are the challenges to assess the impacts on greenhouse gas emissions?. Resour. Conserv. Recycl. 108 (2016), 107–133, 10.1016/j.resconrec.2016.01.007.
Alvarenga, P., Mourinha, C., Farto, M., Santos, T., Palma, P., Sengo, J., Morais, M.C., Cunha-Queda, C., Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Manag. 40 (2015), 44–52, 10.1016/j.wasman.2015.01.027.
Migneault, S., Koubaa, A., Nadji, H., Riedl, B., Zhang, S.Y., Deng, J., Medium-density fiberboard produced using pulp and paper sludge from different pulping processes. Wood Fiber Sci. 42 (2010), 292–303.
Geng, X., Deng, J., Zhang, S.Y., Characteristics of pulp and paper sludge and its utilization for the manufacture of medium density fiberboard. Wood Fiber Sci. 39 (2007), 345–351.
Huber, P., Ossard, S., Fabry, B., Bermond, C., Craperi, D., Fourest, E., Conditions for cost-efficient reuse of biological sludge for paper and board manufacturing. J. Clean. Prod. 66 (2014), 65–74, 10.1016/j.jclepro.2013.11.009.
Ahmadi, B., Al-Khaja, W., Utilization of paper waste sludge in the building construction industry. Resour. Conserv. Recycl. 32 (2001), 105–113, 10.1016/S0921-3449(01)00051-9.
Frías, M., Rodríguez, O., Sánchez De Rojas, M.I., Paper sludge, an environmentally sound alternative source of MK-based cementitious materials. A review. Constr. Build. Mater. 74 (2015), 37–48.
Council Directive 1999/31/EC of 26 April on the landfill of waste. Off. J. Eur. Communities, 182, 1999, 1–19.
Waje, S.S., Thorat, B.N., Mujumdar, A.S., An experimental study of the thermal performance of a screw conveyor dryer. Dry. Technol. 24 (2006), 293–301, 10.1080/0737393060056450.
Waje, S.S., Thorat, B.N., Mujumdar, A.S., Screw conveyor dryer: process and equipment design. Dry. Technol. 25 (2007), 241–247, 10.1080/07373930601161112.
Zabaniotou, A.A., Simulation of forestry biomass drying in a rotary dryer. Dry. Technol. 18 (2000), 1415–1431, 10.1080/07373930008917785.
Zanoelo, E.F., di Celso, G.M., Kaskantzis, G., Drying kinetics of mate leaves in a packed bed dryer. Biosyst. Eng. 96 (2007), 487–494, 10.1016/j.biosystemseng.2006.12.006.
Yuping, L., Jianghong, P., Yasuki, K., Masanori, I., Atsushi, T., Dening, J., Xiaotao, T.Bi., Limb, C.J., Sokhansanj, S., Novel fluidized bed dryer for biomass drying. Fuel Process. Technol. 122 (2014), 170–175, 10.1016/j.fuproc.2014.01.036.
Korn, O., Cyclone dryer: a pneumatic dryer with increased solid residence time. Dry. Technol. 19 (2001), 1925–1937, 10.1081/DRT-100107280.
Nebra, S.A., Silva, M.A., Mujumdar, A.S., Drying in cyclones - a review. Dry. Technol. 18 (2000), 791–832, 10.1080/07373930008917738.
de Oliveira, L.F., Correa, J.L.G., Tosato, P.G., Borges, S.V., Alves, J.G.L.F., Fonseca, B.E., Sugarcane bagasse drying in a cyclone: influence of device geometry and operational parameters. Dry. Technol. 29 (2011), 946–952, 10.1080/07373937.2011.562062.
Corrêa, J.L.G., Graminho, D.R., Silva, M.A., Nebra, S.A., Cyclone as a sugar cane bagasse dryer. Chin. J. Chem. Eng. 12 (2004), 826–830.
Bunyawanichakul, P., Kirkpatrick, M.P., Sargison, J.E., Walker, G.J., Numerical and experimental studies of the flow field in a cyclone dryer. J. Fluids Eng. 128 (2006), 1240–1250, 10.1115/1.2354523.
Silva, M.A., Nebra, S.A., Numerical simulation of drying in a cyclone. Dry. Technol. 15 (1997), 1731–1741, 10.1080/07373939708917322.
Mäkelä, M., Geladi, P., Response surface optimization of a novel pilot dryer for processing mixed forest industry biosludge. Int. J. Energy Res. 39 (2015), 1636–1648, 10.1002/er.3367.
Mäkelä, M., Geladi, P., Larsson, S.H., Finell, M., Pretreatment of recycled paper sludge with a novel high-velocity pilot cyclone: effect of process parameters on convective drying efficiency. Appl. Energy 131 (2014), 490–498, 10.1016/j.apenergy.2014.06.057.
Mäkelä, M., Geladi, P., Grimm, A., Dahl, O., Pietiläinen, A., Larsson, S.H., Cyclone processing of green liquor dregs (GLD) with results measured and interpreted by ICP-OES and NIR spectroscopy. Chem. Eng. J. 304 (2016), 448–453, 10.1016/j.cej.2016.06.107.
Lähdeniemi, A., Mäkelä, M., Dahl, O., Drying/fractionation of deinking sludge with a high-velocity cyclone. Dry. Technol. 31 (2013), 378–384, 10.1080/07373937.2012.721040.
Fayed, M.E., Otten, L., Handbook of Powder Science & Technology. Second ed., 1997, Chapman & Hall, New York 0-412-99621-9.
Solid Biofuels - Determination of Moisture Content - Oven Dry Method - Part 2: Total Moisture - Simplified Method, BS EN ISO 18134-2, 2015.
Léonard, A., Blacher, S., Marchot, P., Pirard, J.P., Crine, M., Convective drying of wastewater sludges: influence of air temperature, superficial velocity, and humidity on the kinetics. Dry. Technol. 23 (2005), 1667–1679, 10.1081/DRT-200065082.
Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wikström, C., Wold, S., Design of Experiments, Principles and Applications. 2000, Umetrics AB, Umeå Learnways AB, Stockholm 91-973730-0-1.
Saruchera, T., Measurement and Modelling of Particle Residence Time in a Return-flow Cyclone. 1999, University of Canterbury, New Zealand (Doctoral thesis).
Trefz, M., Muschelknautz, E., Extended cyclone theory for gas flows with high solids concentrations. Chem. Eng. Technol. 16 (1993), 153–160, 10.1002/ceat.270160303.
Mothilal, T., Pitchandi, K., Effect of particles density on holdup mass and heat transfer in solid cyclone heat exchanger. ARPN J. Eng. Appl. Sci. 11 (2016), 1293–1297.
Hsiao, T.C., Huang, S.H., Hsu, C.W., Chen, C.C., Chang, P.K., Effects of the geometric configuration on cyclone performance. J. Aerosol Sci. 86 (2015), 1–12, 10.1016/j.jaerosci.2015.03.005.
Bi, H.T., Grace, J.R., Zhu, J.X., Types of choking in vertical pneumatic systems. Int. J. Multiphase Flow 19 (1993), 1077–1092, 10.1016/0301-9322(93)90079-A.
Bryant, H.S., Silverman, R.W., Zenz, F.A., How dust in gas affects cyclone pressure drop. Hydrocarb. Process. 62 (1983), 87–90.
Stern, A.C., Caplan, K.J., Bush, P.D., Cyclone Dust Collectors. 1955, American Petroleum Institute, New York.
Xiang, R., Park, S.H., Lee, K.W., Effects of cone dimension on cyclone performance. J. Aerosol Sci. 32 (2001), 549–561, 10.1016/S0021-8502(00)00094-X.
Zhu, Y., Lee, K.W., Experimental study on small cyclones operating at high flowrates. J. Aerosol Sci. 30 (1999), 1303–1315, 10.1016/S0021-8502(99)00024-5.
Gimbum, J., Chuah, T.G., Choong, T.S.Y., Fakhru'l-Razi, A., Prediction of the effects of cone tip diameter on cyclone performance. J. Aerosol Sci. 36 (2005), 1056–1065, 10.1016/j.jaerosci.2004.10.014.
Iozia, D.L., Leith, D., The logistic function and cyclone fractional efficiency. Aerosol Sci. Technol. 12 (1990), 598–606, 10.1080/02786829008959373.
Kim, J.C., Lee, K.W., Experimental study of particle collection by small cyclones. Aerosol Sci. Technol. 12 (1990), 1003–1015, 10.1080/02786829008959410.
Lim, K.S., Kim, H.S., Lee, K.W., Characteristics of the collection efficiency for a cyclone with different vortex finder shapes. J. Aerosol Sci. 35 (2004), 743–754, 10.1016/j.jaerosci.2003.12.002.