Moriconi, M. L.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy, CNR-Istituto di Scienze dell'Atmosfera e del Clima, Bologna, Italy
Adriani, A.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Dinelli, B. M.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy, CNR-Istituto di Scienze dell'Atmosfera e del Clima, Bologna, Italy
Fabiano, F.; CNR-Istituto di Scienze dell'Atmosfera e del Clima, Bologna, Italy, Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
Altieri, F.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Tosi, F.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Filacchione, G.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Migliorini, A.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Gérard, Jean-Claude ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Mura, A.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Grassi, D.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Sindoni, G.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Piccioni, G.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Noschese, R.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Cicchetti, A.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Bolton, S. J.; Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, United States
Connerney, J. E. P.; NASA Goddard Space Flight Center, Greenbelt, MD, United States
Atreya, S. K.; Planetary Science Laboratory, University of Michigan, Ann Arbor, MI, United States
Bagenal, F.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Gladstone, G. R.; Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, United States
Hansen, C.; Planetary Science Institute, Tucson, AZ, United States
Kurth, W. S.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Levin, S. M.; Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States
Mauk, B. H.; The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
McComas, D. J.; Plasma Physics Laboratory, Princeton University, Princeton, NJ, United States
Turrini, D.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy, Departamento de Fisica, Universidad de Atacama, Copiapò, Chile
Stefani, S.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Acton, C. H. (1996), Ancillary data services of NASA's Navigation and Ancillary Information Facility, Planet. Space Sci., 44, 65–70, doi:10.1016/0032-0633(95)00107-7.
Adriani, A., et al. (2014), JIRAM, the Jovian Infrared Auroral Mapper, Space Sci. Rev., 1–54, doi:10.1007/s11214-014-0094-y.
Adriani, A., et al. (2016), Juno's Earth flyby: The Jovian infrared Auroral Mapper preliminary results, Astrophys. Space Sci., 361, 8, doi:10.1007/s10509-016-2842-9.
Adriani, A., et al. (2017), Preliminary results from the JIRAM auroral observations taken during the first Juno orbit: 2—Analysis of the Jupiter southern H3 + emissions and comparison with the north aurora, Geol. Res. Lett., doi:10.1002/2017GL072905.
Altieri, F., B. M. Dinelli, A. Migliorini, M. L. Moriconi, G. Sindoni, A. Adriani, A. Mura, and F. Fabiano (2016), Mapping of hydrocarbons and H3 + emissions at Jupiter's north pole using Galileo/NIMS data, Geophys. Res. Lett., 43, 11,558–11,566, doi:10.1002/2016GL070787.
Caldwell, J., A. T. Tokunaga, and G. S. Orton (1983), Further observations of 8-μm polar brightenings of Jupiter, Icarus, 53, 133–140, doi:10.1016/0019-1035(83)90026-X.
Caldwell, J., et al. (1988), Infrared polar brightenings on Jupiter: IV. Spatial properties of methane emission, Icarus, 74, 331–339, doi:10.1016/0019-1035(88)90045-0.
Connerney, J. E. P., M. H. Acuña, N. F. Ness, and T. Satoh (1998), New models of Jupiter's magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 103(A6), 11,929–11,939, doi:10.1029/97JA03726.
Cravens, T. E., J. H. Waite Jr., T. I. Gombosi, N. Lugaz, G. R. Gladstone, B. H. Mauk, and R. J. MacDowall (2003), Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling, J. Geophys. Res., 108(A12), 1465, doi:10.1029/2003JA010050.
Dinelli, B. M., et al. (2017), Preliminary results from the JIRAM auroral observations taken during the first Juno orbit: 1—Methodology and analysis applied to the Jovian northern polar region, Geol. Res. Lett., doi:10.1002/2017GL072929.
Drossart, P., B. Bézard, S. K. Atreya, J. Bishop, J. H. Waite Jr., and D. Boice (1993), Thermal profiles in the auroral regions of Jupiter, J. Geophys. Res., 98, 18,803–18,811, doi:10.1029/93JE01801.
Drossart, P., T. Fouchet, J. Crovisier, E. Lellouch, T. Encrenaz, H. Feuchtgruber, and J.-P. Champion (1999), Fluorescence in the 3 micron bands of methane on Jupiter and Saturn from ISO/SWS observations, ESA SP-427, 169–172.
Gladstone, G. R., et al. (2002), A pulsating auroral X-ray hot spot on Jupiter, Nature, 415, 1000–1003, doi:10.1038/4151000a.
Grodent, D., J. H. Waite Jr., and J.-C. Gérard (2001), A self-consistent model of the Jovian auroral thermal structure, J. Geophys. Res., 106(A7), 12,933–12,952, doi:10.1029/2000JA900129.
Grodent, D., J. T. Clarke, J. Kim, J. H. Waite Jr., and S. W. H. Cowley (2003), Jupiter's main auroral oval observed with HST-STIS, J. Geophys. Res., 108(A11), 1389, doi:10.1029/2003JA009921.
Hui, Y., D. R. Schultz, V. A. Kharchenko, P. C. Stancil, T. E. Cravens, C. M. Lisse, and A. Dalgarno (2009), The ion-induced charge-exchange X-ray emission of the Jovian auroras: Magnetospheric or solar wind origin?, Astrophys. J., 702, L158–L162, doi:10.1088/0004-637X/702/2/L158.
Kim, S. J., et al. (1991), Images of aurorae on Jupiter from H3 + emission at 4 μm, Nature, 353, 536–539, doi:10.1038/353536a0.
Kim, S. J., et al. (2009), Jupiter's hydrocarbon polar brightening: Discovery of 3-micron line emission from south polar CH4, C2H2, and C2H6, Icarus, 202, 354–357, doi:10.1016/j.icarus.2009.03.020.
Kim, S. J., et al. (2015), Hot CH4 in the polar regions of Jupiter, Icarus, 257, 217–220, doi:10.1016/j.icarus.2015.05.008.
Ozak, N., T. E. Cravens, and D. R. Schultz (2013), Auroral ion precipitation at Jupiter: Predictions for Juno, Geophys. Res. Lett., 40, 4144–4148, doi:10.1002/grl.50812.
Sada, P. V., et al. (2003), Transient IR phenomena observed by Cassini/CIRS in Jupiter's auroral regions, Bull. Am. Astron. Soc., 35, 402.