Mura, A.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Adriani, A.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Altieri, F.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Connerney, J. E. P.; NASA Goddard Space Flight Center, Greenbelt, MD, United States
Bolton, S. J.; Southwest Research Institute, San Antonio, TX, United States
Moriconi, M. L.; CNR-Istituto di Scienze dell'Atmosfera e del Clima, Bologna, Italy
Gérard, Jean-Claude ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Kurth, W. S.; Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States
Dinelli, B. M.; CNR-Istituto di Scienze dell'Atmosfera e del Clima, Bologna, Italy
Fabiano, F.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy, CNR-Istituto di Scienze dell'Atmosfera e del Clima, Bologna, Italy
Tosi, F.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Atreya, S. K.; Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, United States
Bagenal, F.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Gladstone, G. R.; Southwest Research Institute, San Antonio, TX, United States
Hansen, C.; Planetary Science Institute, Tucson, AZ, United States
Levin, S. M.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Mauk, B. H.; The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
McComas, D. J.; PPPL, Princeton University, Princeton, NJ, United States
Sindoni, G.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Filacchione, G.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Migliorini, A.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Grassi, D.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Piccioni, G.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Noschese, R.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Cicchetti, A.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Turrini, D.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy, UDA, Departamento de Fisica, Universidad de Atacama, Copiapó, Chile
Stefani, S.; INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Amoroso, M.; Agenzia Spaziale Italiana, Rome, Italy
Acton, C. H. (1996), Ancillary data services of NASA's navigation and ancillary information facility, Planet. Space. Sci., 44(1), 65–70.
Adriani, A., et al. (2008), JIRAM, the image spectrometer in the near infrared on board the Juno mission to Jupiter, Astrobiology, 8(3), 613–622, doi:10.1089/ast.2007.0167.
Adriani, A., et al. (2014), JIRAM, the Jovian infrared Auroral Mapper, Space Sci. Rev., doi:10.1007/s11214-014-0094-y.
Adriani, A., M. L. Moriconi, A. Mura, F. Tosi, G. Sindoni, R. Noschese, A. Cicchetti, and G. Filacchione (2016), Juno's Earth flyby: The Jovian infrared Auroral Mapper preliminary results, Astrophys. Space Sci., 361(8), 8, doi:10.1007/s10509-016-2842-9.
Adriani, A., et al. (2017), Preliminary results from the JIRAM auroral observations taken during the first Juno orbit: 2—Analysis of the Jupiter southern H3 + emissions and comparison with the north aurora, Geophys. Res. Lett., doi:10.1002/2017GL072905, in press.
Ballester, G. E., et al. (1996), Time-resolved observations of Jupiter's far-ultraviolet aurora, Science, 274, 409–412.
Bolton, S. J., et al. (2017), Jupiter's interior and deep atmosphere: The first close polar pass with the Juno spacecraft, Science, doi:10.1126/science.aal2108, in press.
Bonfond, B., S. Hess, J.-C. Gérard, D. Grodent, A. Radioti, V. Chantry, J. Saur, S. Jacobsen, and J. T. Clarke (2013a), Evolution of the Io footprint brightness I: Far-UV observations, Planet. Space Sci., 2013(88), 64.
Bonfond, B., S. Hess, F. Bagenal, J.-C. Gérard, D. Grodent, A. Radioti, J. Gustin, and J. T. Clarke (2013b), The multiple spots of the Ganymede auroral footprint, Geophys. Res. Lett., 40, 4977, doi:10.1002/grl.50989.
Bonfond, B., D. Grodent, S. V. Badman, J. Saur, J. C. Gérard, and A. Radioti (2017), Similarity of the Jovian satellite footprints: Spots multiplicity and dynamics, Icarus, 292, 208–217.
Clarke, J., D. Grodent, S. Cowley, E. Bunce, P. Zarka, J. Connerney, and T. Satoh (2004), Jupiter's aurora, in Jupiter: Planet, Satellites, Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 639–670, Cambridge Univ. Press, Cambridge, U. K.
Connerney, J. E. P., M. H. Acuna, and N. F. Ness (1981), Modeling the Jovian current sheet and inner magnetosphere, J. Geophys. Res., 86, 8370–8384, doi:10.1029/JA086iA10p08370.
Connerney, J. E. P., R. Baron, T. Satoh, and T. Owen (1993), Images of excited H3 + at the foot of the Io flux tube in Jupiter's atmosphere, Science, 262, 1035–1038.
Connerney, J. E. P., M. H. Acuña, N. F. Ness, and T. Satoh (1998), New models of Jupiter's magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 103(A6), 11,929–11,939, doi:10.1029/97JA03726.
Connerney, J. E. P., and T. Satoh (2000), The H3 + ion: A remote diagnostic of the Jovian magnetosphere, Philos. Trans. R. Soc. London, Ser. A, 358, 2471–2483.
Connerney, J. E. P., et al. (2017), Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits, Science, doi:10.1126/science.aam5928, in press.
Cowley, S. W. H., and E. J. Bunce (2001), Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system, Planet. Space Sci., 49, 1067–1088.
Cowley, S. W. H., E. J. Bunce, T. S. Stallard, and S. Miller (2003), Jupiter's polar ionospheric flows: Theoretical interpretation, Geophys. Res. Lett., 30(5), 1220, doi:10.1029/2002GL016030.
Dinelli, B. M., et al. (2017), Preliminary results from the JIRAM auroral observations taken during the first Juno orbit: 1—Methodology and analysis applied to the Jovian northern polar region, Geophys. Res. Lett., doi:10.1002/2017GL072929, in press.
Dumont, M., D. Grodent, A. Radioti, B. Bonfond, and J.-C. Gérard (2014), Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections, J. Geophys. Res. Space Physics, 119, 10,068–10,077, doi:10.1002/2014JA020527.
Gérard, J.-C., V. Dols, R. Prange, and F. Paresce (1994), The morphology of the north Jovian ultraviolet aurora observed with the Hubble Space Telescope, Planet. Space Sci., 42, 905–917.
Gérard, J. C., A. Saglam, D. Grodent, and J. T. Clarke (2006), Morphology of the ultraviolet Io footprint emission and its control by Io's location, J. Geophys. Res., 111, A04202, doi:10.1029/2005JA011327.
Gladstone, G. R., et al. (2014), The ultraviolet spectrograph on NASA's Juno mission, Space Sci. Rev., doi:10.1007/s11214-014-0040-z.
Gladstone, R., et al (2017), Juno-UVS approach observations of Jupiter's auroras, Geophys. Res. Lett., doi:10.1002/2017GL073377, in press.
Grodent, D., J. H. Waite Jr., and J.-C. Gérard (2001), A self-consistent model of the Jovian auroral thermal structure, J. Geophys. Res., 106(A7), 12,933–12,952, doi:10.1029/2000JA900129.
Grodent, D., J. T. Clarke, J. Kim, J. H. Waite Jr., and S. W. H. Cowley (2003), Jupiter's main auroral oval observed with HST-STIS, J. Geophys. Res. Lett., 180(A11), 1389, doi:10.1029/20003JA009921.
Hess, S. L. G., B. Bonfond, P. Zarka, and D. Grodent (2011), Model of the Jovian magnetic field topology constrained by the Io auroral emissions, J. Geophys. Res., 116, A05217, doi:10.1029/2010JA016262.
Hill, T. W. (2001), The Jovian auroral oval, J. Geophys. Res., 106, 8101–8107, doi:10.1029/2000JA000302.
Hiraki, Y., and C. Tao (2008), Parameterization of ionization rate by auroral electron precipitation in Jupiter, Ann. Geophys., 26, 77–86.
Mauk, B. H., J. T. Clarke, D. Grodent, J. H. Waite Jr., C. P. Paranicas, and D. J. Williams (2002), Transient aurora on Jupiter from injections of magnetospheric electrons, Nature, 415, 1003–1005, doi:10.1038/4151003a.
Moriconi, M. L., et al. (2017), Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions, Geophys. Res. Lett., doi:10.1002/2017GL073592, in press.
Radioti, A., M. Lystrup, B. Bonfond, D. Grodent, and J.-C. Gérard (2013), Jupiter's aurora in ultraviolet and infrared: Simultaneous observations with the Hubble Space Telescope and the NASA infrared telescope facility, J. Geophys. Res, 118, 2286–2295, doi:10.1002/jgra.50245.
Satoh, T., and J. E. P. Connerney (1999a), Jupiter's H3 + emissions viewed in corrected Jovi magnetic coordinates, Icarus, 141, 236–252.
Satoh, T., and J. E. P. Connerney (1999b), Spatial and temporal variations of Jupiter's H3 + emissions deduced from image analysis, Geophys. Res. Lett., 26, 1789–1792, doi:10.1029/1999GL900372.
Saur, J., F. M. Neubauer, D. F. Strobel, and M. E. Summers (1999), Three-dimensional plasma simulation of Io's interaction with the Io plasma torus: Asymmetric plasma flow, J. Geophys. Res., 104, 25,105–25,126, doi:10.1029/1999JA900304.
Stallard, T., S. Miller, G. Millward, and R. D. Joseph (2002), On the dynamics of the Jovian ionosphere and thermosphere: II. The measurement of H+ 3 vibrational temperature, column density, and total emission, Icarus, 156, 498–514.
Stallard, T. S., J. T. Clarke, H. Melin, S. Miller, J. D. Nichols, J. O'Donoghue, R. E. Johnson, J. E. P. Connerney, T. Satoh, and M. Perry (2016), Stability within Jupiter's polar auroral ‘Swirl region’ over moderate timescales, Icarus, 268, 145–155, doi:10.1016/j.icarus.2015.12.044.
Tao, C., S. V. Badman, and M. Fujimoto (2011), UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison, Icarus, 213, 581–592.