NOTICE: this is the author’s version of a work that was accepted for publication in Mechanics of Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mechanics of Materials, 114 (2017), 180-200 DOI: 10.1016/j.mechmat.2017.08.006
All documents in ORBi are protected by a user license.
Mean-Field Homogenization; Composites; Elasto-visco-plasticity; Incremental-secant; Second statistical moments
Abstract :
[en] This paper presents an extension of the recently developed incremental-secant mean-field homogenization (MFH) procedure in the context of elasto-plasticity to elasto-visco-plastic composite materials while accounting for second statistical moments. In the incrementalsecant
formulation, a virtual elastic unloading is performed at the composite level in order to evaluate the residual stress and strain states in the different phases, from which a secant MFH formulation is applied. When applying the secant MFH process, the Linear-Comparison-Composite is built from the piece-wise heterogeneous residual strain-stress state using naturally isotropic secant tensors defined using either first or second statistical moment values. As a result non-proportional and non-radial loading conditions can be considered because of the incremental-secant formulation, and accurate predictions can be obtained as no isotropization step is required. The limitation of the incremental-secant formulation previously developed was the requirement in case of hard inclusions to cancel the residual stress in the matrix phase, resulting from the composite material
unloading, to avoid over-stiff predictions. It is shown in this paper that in the case of hard inclusions by defining a proper second statistical moment estimate of the von Mises stress, the residual stress can be kept in the different composite phases. Moreover it is shown that the method can be extended to visco-plastic behaviors without modifying the homogenization process as the incremental-secant formulation only requires the definition of the secant operator of the different phase material models. Finally, it is shown that although it is also possible to define a proper second statistical moment estimate of the von Mises stress in the case of soft inclusions, this does not improve the accuracy as compared to the increment-secant method with first order statistical moment estimates.
FP7 - 291826 - M-ERA.NET - From materials science and engineering to innovation for Europe.
Name of the research project :
The research has been funded by theWalloon Region under the agreement no 1410246- STOMMMAC (CT-INT 2013-03-28) in the context of the M-ERA.NET Joint Call 2014.
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06 CE - Commission Européenne
Aboudi, J., Micromechanical analysis of composites by the method of cells - update. Appl. Mech. Rev. 49:10S (1996), S83–S91, 10.1115/1.3101981.
Agoras, M., Ponte Castañeda, P., Iterated linear comparison bounds for viscoplastic porous materials with ellipsoidal microstructures. J. Mech. Phys. Solids 61:3 (2013), 701–725, 10.1016/j.jmps.2012.11.003.
Berveiller, M., Zaoui, A., An extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mech. Phys. Solids 26:5–6 (1978), 325–344, 10.1016/0022-5096(78)90003-0.
Bobeth, M., Diener, G., Static elastic and thermoelastic field fluctuations in multiphase composites. J. Mech. Phys. Solids 35:2 (1987), 137–149, 10.1016/0022-5096(87)90033-0.
Boudet, J., Auslender, F., Bornert, M., Lapusta, Y., An incremental variational formulation for the prediction of the effective work-hardening behavior and field statistics of elasto-(visco)plastic composites. Int. J. Solids Struct. 83 (2016), 90–113, 10.1016/j.ijsolstr.2016.01.003.
Brassart, L., Stainier, L., Doghri, I., Delannay, L., A variational formulation for the incremental homogenization of elasto-plastic composites. J. Mech. Phys. Solids 59:12 (2011), 2455–2475, 10.1016/j.jmps.2011.09.004.
Brassart, L., Stainier, L., Doghri, I., Delannay, L., Homogenization of elasto-(visco) plastic composites based on an incremental variational principle. Int. J. Plast. 36:0 (2012), 86–112, 10.1016/j.ijplas.2012.03.010.
Buryachenko, V.A., Multiparticle effective field and related methods in micromechanics of composite materials. Appl. Mech. Rev., 54, 2001, 1, 10.1115/1.3097287.
Chaboche, J., Kanouté, P., Roos, A., On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. Int. J. Plast. 21:7 (2005), 1409–1434, 10.1016/j.ijplas.2004.07.001.
Czarnota, C., Kowalczyk-Gajewska, K., Salahouelhadj, A., Martiny, M., Mercier, S., Modeling of the cyclic behavior of elasticviscoplastic composites by the additive tangent Mori–Tanaka approach and validation by finite element calculations. Int. J. Solids Struct. 56-57 (2015), 96–117, 10.1016/j.ijsolstr.2014.12.002.
Doghri, I., Adam, L., Bilger, N., Mean-field homogenization of elastoviscoplastic composites based on a general incrementally affine linearization method. Int. J. Plast. 26:2 (2010), 219–238, 10.1016/j.ijplas.2009.06.003.
Doghri, I., Brassart, L., Adam, L., Gérard, J.S., A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites. Int. J. Plast. 27:3 (2011), 352–371, 10.1016/j.ijplas.2010.06.004.
Doghri, I., Ouaar, A., Homogenization of two-phase elasto-plastic composite materials and structures: study of tangent operators, cyclic plasticity and numerical algorithms. Int. J. Solids Struct. 40:7 (2003), 1681–1712, 10.1016/S0020-7683(03)00013-1.
Doghri, I., Tinel, L., Micromechanical modeling and computation of elasto-plastic materials reinforced with distributed-orientation fibers. Int. J. Plast. 21:10 (2005), 1919–1940, 10.1016/j.ijplas.2004.09.003.
Dvorak, G., Wafa, A., Bahei-El-Din, Y., Implementation of the transformation field analysis for inelastic composite materials. Comput Mech 14:3 (1994), 201–228, 10.1007/BF00370073.
Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241:1226 (1957), pp.376–396.
Geers, M., Kouznetsova, V., Brekelmans, W., Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234:7 (2010), 2175–2182 Fourth International Conference on Advanced {COmputational} Methods in {ENgineering} (ACOMEN 2008). doi: 10.1016/j.cam.2009.08.077.
Ghosh, S., Lee, K., Moorthy, S., Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method. Int. J. Solids Struct. 32:1 (1995), 27–62, 10.1016/0020-7683(94)00097-G.
Hill, R., Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13:2 (1965), 89–101, 10.1016/0022-5096(65)90023-2.
Hill, R., A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13:4 (1965), 213–222, 10.1016/0022-5096(65)90010-4.
Idiart, M.I., Lahellec, N., Estimates for the overall linear properties of pointwise heterogeneous solids with application to elasto-viscoplasticity. J. Mech. Phys. Solids 97 (2016), 317–332 SI:Pierre Suquet Symposium. doi: 10.1016/j.jmps.2015.12.017.
Kanouté, P., Boso, D., Chaboche, J., Schrefler, B., Multiscale methods for composites: a review. Arch. Comput. Methods Eng. 16:1 (2009), 31–75, 10.1007/s11831-008-9028-8.
Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T., An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27:1 (2001), 37–48, 10.1007/s004660000212.
Kröner, E., Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls. Zeitschrift für Physik A Hadrons and Nuclei 151 (1958), 504–518 10.1007/BF01337948.
Lahellec, N., Ponte Castañeda, P., Suquet, P., Variational estimates for the effective response and field statistics in thermoelastic composites with intra-phase property fluctuations. Proc. R. Soc. A 467:2132 (2011), 2224–2246, 10.1098/rspa.2010.0609.
Lahellec, N., Suquet, P., On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles. J. Mech. Phys. Solids 55:9 (2007), 1932–1963, 10.1016/j.jmps.2007.02.003.
Lahellec, N., Suquet, P., On the effective behavior of nonlinear inelastic composites: II. A second-order procedure. J. Mech. Phys. Solids 55:9 (2007), 1964–1992, 10.1016/j.jmps.2007.02.004.
Lahellec, N., Suquet, P., Effective response and field statistics in elasto-plastic and elasto-viscoplastic composites under radial and non-radial loadings. Int. J. Plast., 2013, 10.1016/j.ijplas.2012.09.005.
Li, J., Weng, G., A unified approach from elasticity to viscoelasticity to viscoplasticity of particle-reinforced solids. Int. J. Plast. 14:1 (1998), 193–208, 10.1016/S0749-6419(97)00048-X.
LLorca, J., González, C., Molina-Aldareguía, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., Sádaba, S., Muñoz, R., Canal, L.P., Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23:44 (2011), 5130–5147, 10.1002/adma.201101683.
Masson, R., Bornert, M., Suquet, P., Zaoui, A., An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J. Mech. Phys. Solids 48 (2000), 1203–1227, 10.1016/S0022-5096(99)00071-X.
Masson, R., Zaoui, A., Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials. J. Mech. Phys. Solids 47:7 (1999), 1543–1568, 10.1016/S0022-5096(98)00106-9.
Mercier, S., Molinari, A., Homogenization of elasticviscoplastic heterogeneous materials: self-consistent and Mori–Tanaka schemes. Int. J. Plast. 25:6 (2009), 1024–1048, 10.1016/j.ijplas.2008.08.006.
Mercier, S., Molinari, A., Berbenni, S., Berveiller, M., Comparison of different homogenization approaches for elasticviscoplastic materials. Modell. Simul. Mater. Sci. Eng., 20(2), 2012, 024004.
Michel, J., Moulinec, H., Suquet, P., Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172:1–4 (1999), 109–143, 10.1016/S0045-7825(98)00227-8.
Michel, J., Suquet, P., Nonuniform transformation field analysis. Int. J. Solids Struct. 40:25 (2003), 6937–6955 Special issue in Honor of George J. Dvorak. doi: 10.1016/S0020-7683(03)00346-9.
Michel, J.C., Moulinec, H., Suquet, P., A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int. J. Numer. Methods Eng. 52:1–2 (2001), 139–160, 10.1002/nme.275.
Miehe, C., Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Methods Eng. 55:11 (2002), 1285–1322, 10.1002/nme.515.
Molinari, A., Canova, G., Ahzi, S., A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall. 35:12 (1987), 2983–2994.
Molinari, A., El Houdaigui, F., Tóth, L., Validation of the tangent formulation for the solution of the non-linear eshelby inclusion problem. Int. J. Plast. 20:2 (2004), 291–307, 10.1016/S0749-6419(03)00038-X.
Mori, T., Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21:5 (1973), 571–574 Cited By (since 1996) 1814.
Moulinec, H., Suquet, P., A fft-based numerical method for computing the mechanical properties of composites from images of their microstructures. Pyrz, R., (eds.) IUTAM Symposium on Microstructure-Property Interactions in Composite Materials Solid Mechanics and Its Applications, vol. 37, 1995, Springer Netherlands, 235–246, 10.1007/978-94-011-0059-5_20.
Moulinec, H., Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157:1-2 (1998), 69–94, 10.1016/S0045-7825(97)00218-1.
Moulinec, H., Suquet, P., Intraphase strain heterogeneity in nonlinear composites: a computational approach. Eur. J. Mech. A. Solids 22:5 (2003), 751–770, 10.1016/S0997-7538(03)00079-2.
Nemat-Nasser, S., Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials. 37, 2013, Elsevier.
Noels, L., Wu, L., Adam, L., Review of homogenization methods for heterogeneous materials. Ulrich, P., Schmitz, G.J., (eds.) Handbook of Software Solutions for ICME, 2016, Wiley-VCH, Weinheim, Germany, 433–441 chapter 6.1.1.
Ostlund, R., Golling, S., Oldenburg, M., Microstructure based modeling of ductile fracture initiation in press-hardened sheet metal structures. Comput. Methods Appl. Mech. Eng. 302 (2016), 90–108, 10.1016/j.cma.2015.11.035.
Pettermann, H.E., Plankensteiner, A.F., Böhm, H.J., Rammerstorfer, F.G., A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental mori-tanaka approach. Comput. Struct. 71:2 (1999), 197–214, 10.1016/S0045-7949(98)00208-9.
Pierard, O., Micromechanics of inclusion-reinforced composites in elastoplasticity and elasto-viscoplasticity: modeling and computation, 2006, Université Catholique de Louvain, Louvain-La-Neuve (Belgium).
Pierard, O., Doghri, I., An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites. Int. J. Plast. 22:1 (2006), 131–157, 10.1016/j.ijplas.2005.04.001.
Pierard, O., Doghri, I., Study of various estimates of the macroscopic tangent operator in the incremental homogenization of elastoplastic composites. Int. J. Multiscale Comput. Eng. 4:4 (2006), 521–543.
Pierard, O., LLorca, J., Segurado, J., Doghri, I., Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenization. Int. J. Plast. 23:6 (2007), 1041–1060, 10.1016/j.ijplas.2006.09.003.
Ponte Castañeda, P., The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39:1 (1991), 45–71, 10.1016/0022-5096(91)90030-R.
Ponte Castañeda, P., A new variational principle and its application to nonlinear heterogeneous systems. SIAM J. Appl. Math. 52:5 (1992), 1321–1341.
Ponte Castañeda, P., Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids 44:6 (1996), 827–862, 10.1016/0022-5096(96)00015-4.
Ponte Castañeda, P., Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I - Theory. J. Mech. Phys. Solids 50:4 (2002), 737–757, 10.1016/S0022-5096(01)00099-0.
Ponte Castañeda, P., Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: II - Applications. J. Mech. Phys. Solids 50:4 (2002), 759–782, 10.1016/S0022-5096(01)00098-9.
Ponte Castañeda, P., Bounds for nonlinear composites via iterated homogenization. J. Mech. Phys. Solids 60:9 (2012), 1583–1604, 10.1016/j.jmps.2012.05.004.
Suquet, P., Overall properties of nonlinear composites: a modified secant moduli theory and its link with ponte castañeda's nonlinear variational procedure. Comptes Rendus de l Académie des Sciences 320 (1995), 563–571.
Talbot, D., Willis, J., Some simple explicit bounds for the overall behaviour of nonlinear composites. Int. J. Solids Struct. 29:14–15 (1992), 1981–1987, 10.1016/0020-7683(92)90188-Y.
Talbot, D.R.S., Willis, J.R., Variational principles for inhomogeneous non-linear media. IMA J. Appl. Math. 35:1 (1985), 39–54, 10.1093/imamat/35.1.39.
Talbot, D.R.S., Willis, J.R., Bounds and self-consistent estimates for the overall properties of nonlinear composites. IMA J. Appl. Math. 39:3 (1987), 215–240, 10.1093/imamat/39.3.215.
Terada, K., Hori, M., Kyoya, T., Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 37:16 (2000), 2285–2311, 10.1016/S0020-7683(98)00341-2.
Wu, L., Doghri, I., Noels, L., An incremental-secant mean-field homogenization method with second statistical moments for elasto-plastic composite materials. Philos. Mag. 95:28–30 (2015), 3348–3384, 10.1080/14786435.2015.1087653.
Wu, L., Noels, L., Adam, L., Doghri, I., Multiscale mean-field homogenization method for fiber-reinforced composites with gradient-enhanced damage model. Comput. Methods Appl. Mech. Eng. 233–236 (2012), 164–179, 10.1016/j.cma.2012.04.011.
Wu, L., Noels, L., Adam, L., Doghri, I., A combined incremental–secant mean–field homogenization scheme with per–phase residual strains for elasto–plastic composites. Int. J. Plast. 51 (2013), 80–102, 10.1016/j.ijplas.2013.06.006.
Wu, L., Noels, L., Adam, L., Doghri, I., An implicit-gradient-enhanced incremental-secant mean-field homogenization scheme for elasto-plastic composites with damage. Int. J. Solids Struct. 50:24 (2013), 3843–3860, 10.1016/j.ijsolstr.2013.07.022.
Wu, L., Sket, F., Molina-Aldareguia, J., Makradi, A., Adam, L., Doghri, I., Noels, L., A study of composite laminates failure using an anisotropic gradient-enhanced damage mean-field homogenization model. Compos. Struct. 126 (2015), 246–264, 10.1016/j.compstruct.2015.02.070.