[en] Seagrass meadows can be assimilated to seascape
matrixes encompassing a mosaic of natural and
anthropogenic patches. Natural patches within the Mediterranean
Posidonia oceanica meadows show a structural
particularity which consist in a duality of their edge types.
One edge is eroded by bottom currents, while the adjacent
meadow colonizes the bare sediments. This study aims to
study the dynamics of these two edges through the investigation
of the biogeochemistry (pH, total alkalinity, dissolved
inorganic carbon, CO2,
CH4,
N2O,
H2S,
dissolved
inorganic nitrogen, PO4
3−) within vegetated and unvegetated
sediments. These observations are compared with
the adjacent meadow to have a better understanding of the
colonization processes. Our results reveal that the P. oceanica
matrix shows differences from the vegetated edges of
sand patches, especially with regard to nutrient availability,
which is generally more important at the colonized edge
(dissolved inorganic nitrogen up to 65.39 μM in June). A
clear disparity also occurs between the eroded and colonized
edge with both a seasonal and bathymetrical variation of leaf
biomass with higher disparities at 10 m in June (colonized
edge 1415 gDW m−2; eroded edge 1133 gDW m−2). Themost important contrasts during this study were assessed in
June, suggesting that the warm period of the year is more
suitable for sampling to highlight disparate characteristics in
temperate seagrass meadows. These findings put into light
the potential importance of biogeochemical processes in
the dynamics of natural patch edges. We hypothesize that
they may influence the structural dynamics of P. oceanica
seascapes.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abadie A, Gobert S, Bonacorsi M, Lejeune P, Pergent G, Pergent-Martini C (2015) Marine space ecology and seagrasses. Does patch type matter in Posidonia oceanica seascapes? Ecol Indic 57:435–446. doi:10.1016/j.ecolind.2015.05.020
Abadie A, Lejeune P, Pergent G, Gobert S (2016) From mechanical to chemical impact of anchoring in seagrasses: the premises of anthropogenic patch generation in Posidonia oceanica meadows. Mar Pollut Bull 109:61–71
Aminot A, Kérouel R (2007) Dosage automatique des nutriments dans les eaux marines. Editions Quae Ifremer, Versailles
Angelstam P (1992) Conservation of communities—the importance of edges, surroundings and landscape mosaic structure ecological principles of nature conservation. Springer, Berlin, pp 9–70
Barrón C, Duarte CM, Frankignoulle M, Borges AV (2006) Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica) meadow. Estuar Coast 29:417–426. doi:10.1007/BF02784990
Bay D (1984) A field study of he growth dynamics and productivity of Posidonia oceanica (L.) Delile in Calvi Bay, Corsica. Aquat Bot 20:43–64
Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern BS, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MP (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641. doi:10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2
Borg JA, Rowden AA, Attrill MJ, Schembri PJ, Jones MB (2006) Wanted dead or alive: high diversity of macroinvertebrates associated with living and ‘dead’ Posidonia oceanica matte. Mar Biol 149(3):667–677. doi:10.1007/s00227-006-0250-3
Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guerin F, Lambert T, Morana C, Okuku E, Bouillon S (2015) Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8:637–642. doi:10.1038/ngeo2486. http://www.nature.com/ngeo/journal/v8/n8/abs/ngeo2486.html—supplementary-information
Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: a review. Estuar Coast Shelf Sci 68:383–403. doi:10.1016/j.ecss.2006.01.026
Brooks KM (2001) An evaluation of the relationship between salmon farm biomass, organic inputs to sediments, physicochemical changes associated with those inputs and the infaunal response—with emphasis on total sediment sulfides, total volatile solids, and oxidation-reduction potential as surrogate endpoints for biological monitoring. Aquatic Environmental Sciences, 644 Old Eaglemount Road, Port Townsend, Washington 98368
Buia MC, Zupo V, Mazzella L (1992) Primary production and growth dynamics in Posidonia oceanica. Mar Ecol 13:2–16
Burdige DJ, Zimmerman RC (2002) Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol Oceanogr 47:1751–1763
Caffrey JM, Kemp WM (1990) Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliatus and Zostera marina. Mar Ecol Prog Ser 66:147–160
Calleja ML, Marbà N, Duarte CM (2007) The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuar Coast Shelf Sci 73:583–588. doi:10.1016/j.ecss.2007.02.016
Canals M, Ballesteros E (1997) Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. Deep Sea Res II (Top Stud Oceanogr) 44:611–629
Carpenter JH (1965) The accuracy of the Winkler method for dissolved oxygen analysis. Limnol Oceanogr 10:135–140. doi:10.4319/lo.1965.10.1.0135
Clabaut P, Augris C, Pergent G, Pergent-Martini C, Pasqualini V, Bonacorsi M (2014) Les fonds marins côtiers de Corse. Cartographie biomorphosédimentaire. Editions Quae, Versailles
Dauby P, Poulicek M (1995) Methods for removing epiphytes from seagrasses: SEM observations on treated leaves. Aquat Bot 52:217–228
de Boer WF (2007) Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591:5–24
de los Santos CB, Vicencio-Rammsy B, Lepoint G, Remy F, Bouma TJ, Gobert S (2016) Ontogenic variation and effect of collection procedure on leaf biomechanical properties of Mediterranean seagrass Posidonia oceanica (L.) Delile. Mar Ecol 37(4):750–759. doi:10.1111/maec.12340
den Hartog C (1970) The sea-grasses of the world. North-Holland Pub. Co., Amsterdam
Díaz-Almela E, Marbà N, Martínez R, Santiago R, Duarte CM (2009) Seasonal dynamics of Posidonia oceanica in Magaluf Bay (Mallorca, Spain): temperature effects on seagrass mortality. Limnol Oceanogr 54:2170–2182. doi:10.4319/lo.2009.54.6.2170
Dickson AG (1993) pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep Sea Res Part I 40:107–118
Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res A Oceanogr Res Pap 34:1733–1743
Elkalay K, Frangoulis C, Skliris N, Goffart A, Gobert S, Lepoint G, Hecq J-H (2003) A model of the seasonal dynamics of biomass and production of the seagrass Posidonia oceanica in the Bay of Calvi (Northwestern Mediterranean). Ecol Model 167:1–18. doi:10.1016/S0304-3800(03)00074-7
Enriquez S, Marbà N, Cebriàn J, Duarte CM (2004) Annual variation in leaf photosynthesis and leaf nutrient content of four Mediterranean seagrasses. Bot Mar 47:295–306
Eyre BD, Ferguson AJP, Webb A, Maher D, Oakes JM (2011) Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry 102:111–133. doi:10.1007/s10533-010-9425-6
Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge
Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509. http://www.nature.com/ngeo/journal/v5/n7/abs/ngeo1477.html—supplementary-information
Gacia E, Duarte C, Middelburg JJ (2002) Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47:23–32
García R, Sánchez-Camacho M, Duarte CM, Marbà N (2012) Warming enhances sulphide stress of Mediterranean seagrass (Posidonia oceanica). Estuar Coast Shelf Sci 113:240–247. doi:10.1016/j.ecss.2012.08.010
García-Martínez M, López-López A, Calleja ML, Marbà N, Duarte CM (2009) Bacterial community dynamics in a seagrass (Posidonia oceanica) meadow sediment. Estuar Coast 32:276–286
Gera A, Pages JF, Romero J, Alcoverro T (2013) Combined effects of fragmentation and herbivory on Posidonia oceanica seagrass ecosystems. J Ecol 101:1053–1061
Giraud G (1979) Sur une méthode de mesure et de comptage des structures foliaires de Posidonia oceanica (Linnaeus) Delile. Bull Mus d’Histoire Nat Marseille 39:33–39
Gobert S, Lepoint G, Biondo R, Bouquegneau JM (2006) In situ sampling of pore waters from seagrass meadows. Biol Mar Mediterr 13:230–234
Gobert S, Lepoint G, Pelaprat C, Remy F, Lejeune P, Richir J, Abadie A (2016) Temporal evolution of sand corridors in a Posidonia oceanica seascape: a 15-years study. Mediterr Mar Sci 17:777–784. doi:10.12681/mms.1816
Gran G (1952) Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanol Acta 5:209–218
Holmer M, Frederiksen MS (2007) Stimulation of sulfate reduction rates in Mediterranean fish farm sediments inhabited by the seagrass Posidonia oceanica. Biogeochemistry (Dordrecht) 85:169–184
Holmer M, Duarte CM, Marbá N (2003) Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66:223–239
Holmer M, Duarte CM, Boschker HTS, Barrón C (2004) Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat Microb Ecol 36(3):227–237. doi:10.3354/ame036227
Infantes E, Terrados J, Orfila A, Cañellas B, Álvarez-Ellacuria A (2009) Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot Mar 52:419–427. doi:10.1515/BOT.2009.050
Invers O, Romero J, Pérez M (1997) Effects of pH on seagrass photosynthesis: a laboratory and field assessment. Aquat Bot 59:185–194
Ku TCW, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim Cosmochim Acta 63:2529–2546
Lawton JH (1994) What do species do in ecosystems? Oikos 71:367–374. doi:10.2307/3545824
Lepoint G, Millet S, Dauby P, Gobert S, Bouquegneau JM (2002) Annual nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake experiments. Mar Ecol Prog Ser 237:87–96
Lewis E, Wallace DWR (1998) CO2SYS-program developed for the CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge
Li X, Mander U (2009) Future options in landscape ecology: development and research. Prog Phys Geol 33:31–48. doi:10.1177/0309133309103888
López NI, Duarte CM, Vallespinós F, Romero J, Alcoverro T (1998) The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. J Exp Mar Biol Ecol 224:155–166. doi:10.1016/S0022-0981(97)00189-5
Marba N, Cebrian J, Enriquez S, Duarte CM (1996) Growth patterns of Western Mediterranean seagrasses: species-specific responses to seasonal forcing. Mar Ecol Prog Ser 133:203–215
Marbà N, Holmer M, Gacia E, Barron C (2006) Seagrass beds and coastal biogeochemistry. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 135–157
Mateo MA, Romero J (1997) Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar Ecol Prog Ser 151:43–53
Mazarrasa I, Marbà N, Lovelock CE, Serrano O, Lavery PS, Fourqurean JW, Kennedy H, Mateo MA, Krause-Jensen D, Steven ADL (2015) Seagrass meadows as a globally significant carbonate reservoir. Biogeosci Disc 12(16):4993–5003. doi:10.5194/bg-12-4993-2015
Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. doi:10.4319/lo.1973.18.6.0897
Molinier R, Picard J (1952) Recherches sur les herbiers de phanérogames marines du littoral méditerranéen français. Ann Inst Oceanogr 27:157–234
Mutti M, Hallock P (2003) Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. Int J Earth Sci 92:465–475
Olesen B, Enríquez S, Duarte CM, Sand-Jensen K (2002) Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar Ecol Prog Ser 236:89–97
Ondiviela B, Losada IJ, Lara JL, Maza M, Galván C, Bouma TJ, van Belzen J (2014) The role of seagrasses in coastal protection in a changing climate. Coast Eng 87:158–168. doi:10.1016/j.coastaleng.2013.11.005
Pedersen MO, Serrano O, Mateo MA, Holmer M (2011) Temperature effects on decomposition of a Posidonia oceanica mat. Aquat Microb Ecol 65:169–182. doi:10.3354/ame01543
Prado P, Alcoverro T, Romero J (2009) Welcome mats? The role of seagrass meadow structure in controlling post-settlement survival in a keystone sea-urchin species. Estuar Coast Shelf Sci 85:472–478
Robbins BD, Bell SS (1994) Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends Ecol Evol 9:301–304. doi:10.1016/0169-5347(94)90041-8
Romero J, Lee K-S, Pérez M, Mateo MA, Alcoverro T (2006) Nutrient dynamics in seagrass ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 227–254
Serrano O, Mateo MA, Renom P, Julià R (2012) Characterization of soils beneath a Posidonia oceanica meadow. Geoderma 185–186:26–36. doi:10.1016/j.geoderma.2012.03.020
Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada
Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Evol Syst 20:171–197
Vacchi M, Montefalcone M, Bianchi CN, Morri C, Ferrari M (2012) Hydrodynamic constraints to the seaward development of Posidonia oceanica meadows. Estuar Coast Shelf Sci 97:58–65. doi:10.1016/j.ecss.2011.11.024
Vacchi M, De Falco G, Simeone S, Montefalcone M, Morri C, Ferrari M, Bianchi CN (2017) Biogeomorphology of the Mediterranean Posidonia oceanica seagrass meadows. Earth Surf Proc Land 42:42–54. doi:10.1002/esp.3932
Weiss RF (1981) Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography. J Chromatogr Sci 19:611–616
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.