Reference : Semantic Background Subtraction
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Computer science
Semantic Background Subtraction
Braham, Marc mailto [Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications >]
Pierard, Sébastien mailto [Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications >]
Van Droogenbroeck, Marc mailto [Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications >]
IEEE International Conference on Image Processing (ICIP), Beijing 17-20 September 2017
IEEE International Conference on Image Processing (ICIP)
17-20 September 2017
[en] Background subtraction ; Change detection ; Semantic segmentation ; Scene labeling ; Scene parsing ; Classification ; Source code in C++ ; Deep learning ; Classifier combination
[en] We introduce the notion of semantic background subtraction, a novel framework for motion detection in video sequences. The key innovation consists to leverage object-level semantics to address the variety of challenging scenarios for background subtraction. Our framework combines the information of a semantic segmentation algorithm, expressed by a probability for each pixel, with the output of any background subtraction algorithm to reduce false positive detections produced by illumination changes, dynamic backgrounds, strong shadows, and ghosts. In addition, it maintains a fully semantic background model to improve the detection of camouflaged foreground objects. Experiments led on the CDNet dataset show that we managed to improve, significantly, almost all background subtraction algorithms of the CDNet leaderboard, and reduce the mean overall error rate of all the 34 algorithms (resp. of the best 5 algorithms) by roughly 50% (resp. 20%). Note that a C++ implementation of the framework is available at
Department of Electrical Engineering and Computer Science (Montefiore Institute) ; Telim
Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (Communauté française de Belgique) - FRIA
Researchers ; Professionals ; Students
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

File(s) associated to this reference

Fulltext file(s):

Open access
Braham2017Semantic.pdfSemantic Background Subtraction (original paper with corrections)Author postprint831.22 kBView/Open
Open access
Braham_ICIP2017_poster.pdfSemantic Background Subtraction (poster)Author postprint1.11 MBView/Open

Additional material(s):

File Commentary Size Access
Open access
SemanticBGS-Code.zipSource code in C/C++ and example79.68 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.