Paper published in a book (Scientific congresses and symposiums)
Semantic Background Subtraction
Braham, Marc; Pierard, Sébastien; Van Droogenbroeck, Marc
2017In IEEE International Conference on Image Processing (ICIP), Beijing 17-20 September 2017
Peer reviewed
 

Files


Full Text
Braham2017Semantic.pdf
Author postprint (851.17 kB)
Semantic Background Subtraction (original paper with corrections)
Download
Full Text Parts
Braham_ICIP2017_poster.pdf
Author postprint (1.14 MB)
Semantic Background Subtraction (poster)
Download
Annexes
SemanticBGS-Code.zip
Publisher postprint (81.59 MB)
Source code in C/C++ and example
Download

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Background subtraction; Change detection; Semantic segmentation; Scene labeling; Scene parsing; Classification; Source code in C++; Deep learning; Classifier combination
Abstract :
[en] We introduce the notion of semantic background subtraction, a novel framework for motion detection in video sequences. The key innovation consists to leverage object-level semantics to address the variety of challenging scenarios for background subtraction. Our framework combines the information of a semantic segmentation algorithm, expressed by a probability for each pixel, with the output of any background subtraction algorithm to reduce false positive detections produced by illumination changes, dynamic backgrounds, strong shadows, and ghosts. In addition, it maintains a fully semantic background model to improve the detection of camouflaged foreground objects. Experiments led on the CDNet dataset show that we managed to improve, significantly, almost all background subtraction algorithms of the CDNet leaderboard, and reduce the mean overall error rate of all the 34 algorithms (resp. of the best 5 algorithms) by roughly 50% (resp. 20%). Note that a C++ implementation of the framework is available at http://www.telecom.ulg.ac.be/semantic.
Research Center/Unit :
Department of Electrical Engineering and Computer Science (Montefiore Institute)
Telim
Disciplines :
Computer science
Author, co-author :
Braham, Marc ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Pierard, Sébastien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Van Droogenbroeck, Marc  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Language :
English
Title :
Semantic Background Subtraction
Publication date :
September 2017
Event name :
IEEE International Conference on Image Processing (ICIP)
Event place :
Beijing, China
Event date :
17-20 September 2017
Audience :
International
Main work title :
IEEE International Conference on Image Processing (ICIP), Beijing 17-20 September 2017
Publisher :
IEEE
Pages :
4552-4556
Peer reviewed :
Peer reviewed
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Available on ORBi :
since 07 August 2017

Statistics


Number of views
753 (114 by ULiège)
Number of downloads
4573 (102 by ULiège)

Scopus citations®
 
104
Scopus citations®
without self-citations
99
OpenCitations
 
52
OpenAlex citations
 
115

Bibliography


Similar publications



Contact ORBi