[en] Quantized magnetic vortices driven by electric current determine key electromagnetic
properties of superconductors. While the dynamic behavior of slow vortices has been
thoroughly investigated, the physics of ultrafast vortices under strong currents remains
largely unexplored. Here, we use a nanoscale scanning superconducting quantum
interference device to image vortices penetrating into a superconducting Pb film at rates of
tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger
than the speed of sound but also exceed the pair-breaking speed limit of superconducting
condensate. These experiments reveal formation of mesoscopic vortex channels which
undergo cascades of bifurcations as the current and magnetic field increase. Our
numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed
Abrikosov-Josephson vortices at even higher velocities. This work offers an insight into the
fundamental physics of dynamic vortex states of superconductors at high current densities,
crucial for many applications.
Disciplines :
Physics
Author, co-author :
Embon, L.; Weizmann Institute of Science
Anahory, Y.; Weizmann Institute of Science
Jelic, Zeljko ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Lachman, E.O.; Weizmann Institute of Science
Myasoedov, Y.; Weizmann Institute of Science
Huber, M.E.; University of Colorado Denver
Mikitik, G.P.; 6 Verkin Institute for Low Temperature Physics & Engineering, Ukrainian Academy of Sciences
Silhanek, Alejandro ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Milosevic, M.V.; Universiteit Antwerpen - UA
Gurevich, A.; Old Dominion University
Zeldov, E.; Weizmann Institute of Science, Rehovot 7610001, Israel
Language :
English
Title :
Imaging of super-fast dynamics and flow instabilities of superconducting vortices
Kang, S. et al. High-performance high-T c superconducting wires. Science 311, 1911-1914 (2006).
Gutiérrez, J. et al. Strong isotropic flux pinning in solution-derived YBa2Cu3O7-x nanocomposite superconductor films. Nat. Mater. 6, 367-373 (2007).
Maiorov, B. et al. Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7. Nat. Mater. 8, 398-404 (2009).
Si, W. et al. High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla. Nat. Commun. 4, 1347 (2013).
Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook. Science 339, 1169-1174 (2013).
Welp, U., Kadowaki, K. & Kleiner, R. Superconducting emitters of THz radiation. Nat. Photon. 7, 702-710 (2013).
Gurevich, A. & Ciovati, G. Dynamics of vortex penetration, jumpwise instabilities, and nonlinear surface resistance of type-II superconductors in strong rf fields. Phys. Rev. B 77, 104501 (2008).
Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-Temperature superconductors. Rev. Mod. Phys. 66, 1125-1388 (1994).
Kopnin, N. Theory of Nonequilibrium Superconductivity. (Oxford University Press, 2001).
Thomann, A. U., Geshkenbein, V. B. & Blatter, G. Dynamical aspects of strong pinning of magnetic vortices in type-II superconductors. Phys. Rev. Lett. 108, 217001 (2012).
Embon, L. et al. Probing dynamics and pinning of single vortices in superconductors at nanometer scales. Sci. Rep. 5, 7598 (2015).
Kwok, W.-K. et al. Vortices in high-performance high-Temperature superconductors. Rep. Prog. Phys 79, 116501 (2016).
Berdiyorov, G. R. et al. Large magnetoresistance oscillations in mesoscopic superconductors due to current-excited moving vortices. Phys. Rev. Lett. 109, 057004 (2012).
Milošević, M. V., Berdiyorov, G. R. & Peeters, F. M. Fluxonic cellular automata. Appl. Phys. Lett. 91, 212501 (2007).
Vodolazov, D. Y. & Peeters, F. M. Rearrangement of the vortex lattice due to instabilities of vortex flow. Phys. Rev. B 76, 014521 (2007).
Grimaldi, G. et al. Speed limit to the Abrikosov lattice in mesoscopic superconductors. Phys. Rev. B 92, 024513 (2015).
Klein, W., Huebener, R. P., Gauss, S. & Parisi, J. Nonlinearity in the flux-flow behavior of thin-film superconductors. J. Low Temp. Phys. 61, 413-432 (1985).
Doettinger, S. G. et al. Electronic instability at high flux-flow velocities in high-Tc superconducting films. Phys. Rev. Lett. 73, 1691-1694 (1994).
Samoilov, A. V., Konczykowski, M., Yeh, N.-C., Berry, S. & Tsuei, C. C. Electric-field-induced electronic instability in amorphous Mo3Si superconducting films. Phys. Rev. Lett. 75, 4118-4121 (1995).
Troyanovski, A. M., Aarts, J. & Kes, P. H. Collective and plastic vortex motion in superconductors at high flux densities. Nature 399, 665-668 (1999).
Lee, J., Wang, H., Dreyer, M., Berger, H. & Barker, B. I. Nonuniform and coherent motion of superconducting vortices in the picometer-per-second regime. Phys. Rev. B 84, 060515 (2011).
Timmermans, M., Samuely, T., Raes, B., Van de Vondel, J. & Moshchalkov, V. V. Dynamic visualization of nanoscale vortex orbits. ACS Nano 8, 2782-2787 (2014).
Keay, J. C. et al. Sequential vortex hopping in an array of artificial pinning centers. Phys. Rev. B 80, 165421 (2009).
Auslaender, O. M. et al. Mechanics of individual isolated vortices in a cuprate superconductor. Nat. Phys. 5, 35-39 (2009).
Goa, P. E. et al. Real-Time magneto-optical imaging of vortices in superconducting NbSe2. Supercond. Sci. Technol. 14, 729-731 (2001).
Kremen, A. et al. Mechanical control of individual superconducting vortices. Nano Lett. 16, 1626-1630 (2016).
Raes, B. et al. Local mapping of dissipative vortex motion. Phys. Rev. B 86, 064522 (2012).
Kalisky, B. et al. Dynamics of single vortices in grain boundaries: I-V characteristics on the femtovolt scale. Appl. Phys. Lett. 94, 202504 (2009).
Cole, D. et al. Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-Asymmetric drives. Nat. Mater. 5, 305-311 (2006).
Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8, 639-644 (2013).
Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1, e1500740 (2015).
Anahory, Y. et al. Emergent nanoscale superparamagnetism at oxide interfaces. Nat. Commun. 7, 12566 (2016).
Zeldov, E. et al. Geometrical barriers in high-Temperature superconductors. Phys. Rev. Lett. 73, 1428-1431 (1994).
Brandt, E. H. Geometric barrier and current string in type-II superconductors obtained from continuum electrodynamics. Phys. Rev. B 59, 3369-3372 (1999).
Brandt, E. H., Mikitik, G. P. & Zeldov, E. Two regimes of vortex penetration into platelet-shaped type-II superconductors. J. Exp. Theor. Phys. 117, 439-448 (2013).
Benkraouda, M. & Clem, J. R. Critical current from surface barriers in type-II superconducting strips. Phys. Rev. B 58, 15103-15107 (1998).
Burlachkov, L., Geshkenbein, V. B., Koshelev, A. E., Larkin, A. I. & Vinokur, V. M. Giant flux creep through surface barriers and the irreversibility line in high-Temperature superconductors. Phys. Rev. B 50, 16770-16773 (1994).
Brandt, E. H. & Indenbom, M. Type-II-superconductor strip with current in a perpendicular magnetic field. Phys. Rev. B 48, 12893-12906 (1993).
Zeldov, E., Clem, J. R., McElfresh, M. & Darwin, M. Magnetization and transport currents in thin superconducting films. Phys. Rev. B 49, 9802-9822 (1994).
Kogan, V. G. Pearl's vortex near the film edge. Phys. Rev. B 49, 15874-15878 (1994).
Albrecht, J. et al. Dramatic role of critical current anisotropy on flux avalanches in MgB2 films. Phys. Rev. Lett. 98, 117001 (2007).
Mikheenko, P., Johansen, T. H., Chaudhuri, S., Maasilta, I. J. & Galperin, Y. M. Ray optics behavior of flux avalanche propagation in superconducting films. Phys. Rev. B 91, 060507 (2015).
Bolz, U., Biehler, B., Schmidt, D., Runge, B.-U. & Leiderer, P. Dynamics of the dendritic flux instability in YBa2Cu3O7-δ films. Europhys. Lett. 64, 517-523 (2003).
Biehler, B., Runge, B.-U., Wimbush, S. C., Holzapfel, B. & Leiderer, P. Velocity measurements of the dendritic instability in YNi2B2. Supercond. Sci. Technol. 18, 385-387 (2005).
Aranson, I. S. et al. Dendritic flux avalanches and nonlocal electrodynamics in thin superconducting films. Phys. Rev. Lett. 94, 037002 (2005).
Olson, C. J., Reichhardt, C. & Nori, F. Superconducting vortex avalanches, voltage bursts, and vortex plastic flow: effect of the microscopic pinning landscape on the macroscopic properties. Phys. Rev. B 56, 6175-6194 (1997).
Olson, C. J., Reichhardt, C. & Nori, F. Fractal networks, braiding channels, and voltage noise in intermittently flowing rivers of quantized magnetic flux. Phys. Rev. Lett. 80, 2197-2200 (1998).
Sivakov, A. G. et al. Josephson behavior of phase-slip lines in wide superconducting strips. Phys. Rev. Lett. 91, 267001 (2003).
Andronov, A., Gordion, I., Kurin, V., Nefedov, I. & Shereshevsky, I. Kinematic vortices and phase slip lines in the dynamics of the resistive state of narrow superconductive thin film channels. Physica C 213, 193-199 (1993).
Larkin, A. I. & Ovchinnikov, Y. N. Nonlinear conductivity of superconductors in the mixed state. Sov. Phys.-J. Exp. Theor. Phys. 41, 960-965 (1975).
Gurevich, A. V. & Mints, R. G. Self-heating in normal metals and superconductors. Rev. Mod. Phys. 59, 941-999 (1987).
Kunchur, M. N. Unstable flux flow due to heated electrons in superconducting films. Phys. Rev. Lett. 89, 137005 (2002).
Gurevich, A. V. et al. Flux flow of Abrikosov-Josephson vortices along grain boundaries in high-Temperature superconductors. Phys. Rev. Lett. 88, 097001 (2002).
Cedergren, K. et al. Interplay between static and dynamic properties of semifluxons in YBa2Cu3O7-δ 0-π Josephson junctions. Phys. Rev. Lett. 104, 177003 (2010).
Roditchev, D. et al. Direct observation of Josephson vortex cores. Nat. Phys. 11, 332-337 (2015).
Carapella, G., Sabatino, P., Barone, C., Pagano, S. & Gombos, M. Current driven transition from Abrikosov-Josephson to Josephson-like vortex in mesoscopic lateral S/S′/S superconducting weak links. Sci. Rep. 6, 35694 (2016).
Giamarchi, T. & Le Doussal, P. Moving glass phase of driven lattices. Phys. Rev. Lett. 76, 3408-3411 (1996).
Sheikhzada, A. & Gurevich, A. Fragmentation of fast Josephson vortices and breakdown of ordered states by moving topological defects. Sci. Rep. 5, 17821 (2015).
Golod, T., Iovan, A. & Krasnov, V. M. Single Abrikosov vortices as quantized information bits. Nat. Commun. 6, 8628 (2015).
Finkler, A. et al. Self-Aligned nanoscale SQUID on a Tip. Nano Lett. 10, 1046-1049 (2010).
Finkler, A. et al. Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena. Rev. Sci. Instrum. 83, 073702 (2012).
Sadovskyy, I. A., Koshelev, A. E., Phillips, C. L., Karpeyev, D. A. & Glatz, A. Stable large-scale solver for Ginzburg-Landau equations for superconductors. J. Comput. Phys. 294, 639-654 (2015).