Abstract :
[en] The stationary background generation problem consists in generating a unique image representing the stationary background of a given video sequence. The LaBGen background generation method combines a pixel-wise median filter and a patch selection mechanism based on a motion detection performed by a background subtraction algorithm. In our previous works related to LaBGen, we have shown that, surprisingly, the frame difference algorithm provides the most effective motion detection on average. Compared to other background subtraction algorithms, it detects motion between two frames without relying on additional past frames, and is therefore memoryless. In this paper, we experimentally check whether the memoryless property is truly relevant for LaBGen, and whether the effective motion detection provided by the frame difference is not an isolated case. For this purpose, we introduce LaBGen-OF, a variant of LaBGen leverages memoryless dense optical flow algorithms for motion detection. Our experiments show that using a memoryless motion detector is an adequate choice for our background generation framework, and that LaBGen-OF outperforms LaBGen on the SBMnet dataset. We further provide an open-source C++ implementation of both methods at http://www.telecom.ulg.ac.be/labgen.
Scopus citations®
without self-citations
8