[en] As with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three
main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. In theory a ray tracing and characterization of each individual component of the optical system (mirrors, windows, and grating) should provide the transmission efficiency of the combined system. However, potentially unknown effects (contamination, misalignment, and measurement errors) can make the final error too large and unacceptable for most applications. Therefore, it is desirable to test and measure the optical properties of the whole system in vacuum and compare the overall response to the response of a calibrated photon detector. A proper comparison then allows the quantification of individual sources of uncertainty and ensures that the whole instrument performance is within acceptable tolerances or pinpoints
which parts fail to meet requirements. Based on the experience with the IMAGE Spectrographic Imager, the Wide-band Imaging Camera, and the ICON Far Ultraviolet instruments, we discuss the steps and procedures for the proper radiometric sensitivity and passband calibration, spot size, imaging distortions, flatfield, and field of view determination.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Frey, Harald; Berkeley University of California - UC Berkeley > Space Sciences Laboratory
Mende, Stephen; Berkeley University of California - UC Berkeley > Space Sciences laboratory
Loicq, Jerôme ; Université de Liège > CSL (Centre Spatial de Liège)
Habraken, Serge ; Université de Liège > Département de physique > Optique - Hololab
Language :
English
Title :
Calibration and testing of wide-field UV instruments
Publication date :
May 2017
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
Wiley, Hoboken, United States - New Jersey
Special issue title :
Measurement Techniques in Solar and Space Physics: Photons
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Avila, R., et al. (2016), ACS Instrument Handbook, pp. 20–32, Version 15.0, STScI, Baltimore, Md.
Corso, A. J., V. Polito, P. Zuppella, S. Zuccon, M. Nardello, P. Nicolosi, J. L. Maria, J. F. Mariscal, E. Quemerais, and M. G. Pelizzo (2013), Extreme and near ultraviolet experimental facility for calibration of space instrumentation, Proc. SPIE, 8861, doi:10.1117/12.2027172.
Davis, M. W., T. K. Greathouse, G. R. Gladstone, K. D. Retherford, D. C. Slater, S. A. Stern, and M. H. Versteeg (2014), Improved ground calibration results from Southwest Research Institute Ultraviolet Radiometric Calibration facility (UV-RCF), Proc. SPIE, 9144, doi:10.1117/12.2057043.
Frey, H. U., S. B. Mende, T. J. Immel, J.-C. Gerard, B. Hubert, S. Habraken, J. Spann, G. R. Gladstone, D. V. Bisikalo, and V. I. Shematovich (2003), Summary of quantitative interpretation of IMAGE far ultraviolet auroral data, Space Science Reviews, 109, 255–283.
Habraken, S., C. Jamar, P. Rochus, S. Mende, and M. Lampton (1997), Optical design of the FUV Spectrographic Imager for the IMAGE mission, Proc. SPIE, 3114, 544–553.
Habraken, S., Y. Houbrechts, E. Renotte, C. A. Jamar, S. B. Mende, H. U. Frey, and O. H. Siegmund (1998), Alignment and performances of the FUV spectrographic imager for the IMAGE mission, Proc. SPIE, 3445, 416–426.
Habraken, S., Y. Houbrechts, E. Renotte, M.-L. Hellin, A. Orban, P. P. Rochus, S. B. Mende, H. U. Frey, S. Geller, and J. M. Stock (1999), Optical calibration of the FUV spectrographic imager for the IMAGE mission, Proc. SPIE, 3765, 508–517.
Hetherington, S., D. Osgood, J. McMann, V. Roberts, J. Gill, and K. McLean (2013), Optical alignment of the Global Precipitation Measurements (GPM) star trackers, Proc. SPIE, 8844, doi:10.1117/12.2024558.
Hock, R. A., P. C. Chamberlin, T. N. Woods, D. Crotser, F. G. Eparvier, D. L. Woodraska, and E. C. Woods (2012), Extreme ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric calibrations and results, Solar Phys., 275, 145–178, doi:10.1007/s11207-010-9520-9.
Howell, S. B. (2006), Handbook of CCD Astronomy, pp. 15–82, Cambridge Univ. Press, Cambrige, U. K.
Kameda, S., et al. (2016), Preflight calibration test results for optical navigation camera telescope (ONC-T) onboard the Hayabusa-2 spacecraft, Space Science Reviews, doi:10.1007/s11214-015-0227-y.
Kalmanson, P. C., C. Sarner, and S. Tonnard (2002), Facilities for the calibration, construction, and environmental testing of instruments and detectors in the EUV and FUV, Proc. SPIE, 4485, 303–315.
Larruquert, J. I., J. A. Mendez, J. A. Aznarez, A. S. Tremsin, and O. H. W. Siegmund (2002), Optical properties and quantum efficiency of thin-film alkali halides in the far ultraviolet, Appl. Opt., 41, 2532–2540.
Loicq, J., C. Kintziger, A. Mazzoli, T. Miller, C. Chou, H. U. Frey, T. J. Immel, and S. B. Mende (2016), Optical design and optical properties of a VUV spectrographic imager for ICON mission, Proc. SPIE, 9905, doi:10.1117/12.2232588.
Mende, S. B. (2016a), Observing the magnetosphere through global auroral imaging. Part 1: Observables, J. Geophys. Res. Space Physics, 121, 10,623–10,637, doi:10.1002/2016JA022558.
Mende, S. B. (2016b), Observing the magnetosphere through global auroral imaging. Part 2: Observing techniques, J. Geophys. Res. Space Physics, 121, 10,638–10,660, doi:10.1002/2016JA022607.
Mende, S. B., et al. (2000a), Far ultraviolet imaging from the IMAGE spacecraft: 2. Wideband FUV imaging, Space Sci. Rev., 91, 271–285.
Mende, S. B., et al. (2000b), Far ultraviolet imaging from the IMAGE spacecraft: 3. Spectral imaging of Lyman alpha and OI 135.6 nm, Space Sci. Rev., 91, 287–318.
Mende, S.B., et al. (2017), The far ultra-violet imager on the ICON mission, Space Science Reviews, in press.
Morrison, D., L. Paxton, D. Humm, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, and C. Mend (2002), On-orbit calibration of the Special Sensor Ultraviolet Scanning Imager (SSUSI)—A far-UV imaging spectrograph on DMSP F16, Proc. SPIE, 4485, 328, doi:10.1117/12.454267.
Peterson, G. L. (2004), Analytic expressions for in-field scattered light distributions, Proc. SPIE, 5178, 184–193, doi:10.1117/12.509120.
Rothman, L. S., et al. (2009), The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 110, 533, doi:10.1016/j.jqsrt.2009.02.013.
Schühle, U. (2003), Cleanliness and calibration stability of UV instruments on SOHO, in Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE, vol. 4853, edited by S. L. Keil and S. V. Avakyan, pp. 88–97.
Vallerga, J. V., and O. H. W. Siegmund (2000), 2K × 2K resolution element photon counting MCP sensor with >200 kHz event rate capability, Nucl. Inst. Meth. Phys. Res., A, 442, 159–163, doi:10.1016/S0168-9002(99)01215-2.
Werner, K. (2010), UV and EUV instruments, in Landolt-Börnstein, Group VI, Astronomy and Astrophysics, vol. 4A, pp. 109–119, Springer, Berlin.
Widenhorn, R., M. M. Blouke, A. Weber, A. Rest, and E. Bodegom (2002), Temperature dependence of dark current in a CCD, Proc. SPIE, 4669, 193–201.
Wieman, S., L. Didkovsky, T. Woods, A. Jones, and C. Moore (2016), Sounding rocket observations of active region soft X-ray spectra between 0.5 and 2.5 nm using a modified SDO/EVE instrument, Sol. Phys., 291, 3567, doi:10.1007/s11207-016-0999-6.
Yan, W., T. Yi, L. Jianpeng, Z. Zhige, and N. Guoqiang (2010), The ground calibration of far ultraviolet scanning imaging spectrometer (FUSIS), Proc. SPIE, 7849, doi:10.1117/12.870475.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.