A damage to crack transition model accounting for stress triaxiality formulated in a hybrid non-local implicit discontinuous Galerkin - cohesive band model framework
Leclerc, Julien; Wu, Ling; Nguyen, Van Dunget al.
2018 • In International Journal for Numerical Methods in Engineering, 113 (3), p. 374-410
This is the submitted version of the paper "A damage to crack transition model accounting for stress triaxiality formulated in a hybrid non-local implicit discontinuous Galerkin - cohesive band model framework, International Journal for Numerical Methods in Engineering VOL 113, PAGE 374-410, 10.1002/nme.5618" which has been published in final form on URL 10.1002/nme.10.1002/nme.5618
All documents in ORBi are protected by a user license.
Damage; Fracture; Discontinuous Galerkin Method; Cohesive Band Method; Cohesive Zone Method; Stress Triaxiality; LIMARC
Abstract :
[en] Modelling the entire ductile fracture process remains a challenge. On the one hand, continuous damage models succeed in capturing the initial diffuse damage stage but are not able to represent discontinuities or cracks. On the other hand, discontinuous methods, as the cohesive zones, which model the crack propagation behaviour, are suited to represent the localised damaging process. However, they are unable to represent diffuse damage. Moreover, most of the cohesive models do not capture triaxiality effect.
In this paper, the advantages of the two approaches are combined in a single damage to crack transition framework. In a small deformation setting, a non-local elastic damage model is associated with a cohesive model in a discontinuous Galerkin finite element framework. A cohesive band model is used to naturally introduce a triaxiality-dependent behaviour inside the cohesive law. Practically, a numerical thickness is introduced to recover a 3D-state, mandatory to incorporate the in-plane stretch effects. This thickness is evaluated to ensure the energy consistency of the method and is not a new numerical parameter. The traction-separation law is then built from the underlying damage model.
Leclerc, Julien ; Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Wu, Ling ; Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Nguyen, Van Dung ; Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic ; Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A damage to crack transition model accounting for stress triaxiality formulated in a hybrid non-local implicit discontinuous Galerkin - cohesive band model framework
Publication date :
20 January 2018
Journal title :
International Journal for Numerical Methods in Engineering
Lemaitre J. Coupled elasto-plasticity and damage constitutive equations. Comput Methods Appl Mech Eng. 1985;51(13):31-49.
Lemaitre J, Chaboche J-L, Benallal A, Desmorat R. Mécanique des matériaux solides - 3rd edition. Dunod, Paris, France; 2009.
Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM. A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct. 2001;38(4445):7723-7746.
Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MGD. Localisation issues in local and nonlocal continuum approaches to fracture. Eur J Mech - A/Solids. 2002;21(2):175-189.
Bazant ZP, Belytschko TB, Chang TP. Continuum theory for StrainSoftening. J Eng Mech. 1984;110(12):1666-1692.
Zbib HM, Aifantis EC. On the gradient-dependent theory of plasticity and shear banding. Acta Mech. 1992;92(1-4):209-225.
Peerlings RHJ, De Borst R, Brekelmans WM, De Vree JHP. Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng. 1996;39(19):3391-3403.
Geers MGD, de Borst R, Brekelmans WAM, Peerlings RHJ. Strain-based transient-gradient damage model for failure analyses. Comput Methods Appl Mech Eng. 1998;160(1):133-153.
Peerlings RHJ, de Borst R, Brekelmans WM, Geers MGD. Gradient-enhanced damage modelling of concrete fracture. Mech Cohesive-Frictional Mater. 1998;3(4):323-342.
Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng. 2010;83(10):1273-1311.
de Borst R, Verhoosel CV. Gradient damage vs phase-field approaches for fracture: similarities and differences. Comput Methods Appl Mech Eng. 2016;312:78-94. Phase Field Approaches to Fracture.
Steinke C, Zreid I, Kaliske M. On the relation between phase-field crack approximation and gradient damage modelling. Comput Mech. 2017;59(5):717-735.
Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8(2):100-104.
Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. In: Dryden HL, Kuerti GDH, Howarth L, von Karman T, eds. Advances in Applied Mechanics, Vol. 7. Elsevier, New-York, United States of America; 1962:55-129.
Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 1999;46(1):131-150.
Moes N, Belytschko T. Extended finite element method for cohesive crack growth. Eng Fract Mech. 2002;69(7):813-833.
Armero F, Linder C. Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int J Fract. 2009;160(2):119.
Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res. 1976;6(6):773-781.
Camacho GT, Ortiz M. Computational modelling of impact damage in brittle materials. Int J Solids Struct. 1996;33(20):2899-2938.
Pandolfi A, Guduru PR, Ortiz M, Rosakis AJ. Three dimensional cohesive-element analysis and experiments of dynamic fracture in C300 steel. Int J Solids Struct. 2000;37(27):3733-3760.
Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech. 1987;54(3):525-531.
Tvergaard V. Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng: A. 1990;125(2):203-213.
Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids. 1994;42(9):1397-1434.
Mergheim J, Kuhl E, Steinmann P. A hybrid discontinuous Galerkin/interface method for the computational modelling of failure. Commun Numer Methods Eng. 2004;20(7):511-519.
Noels L, Radovitzky R. An explicit discontinuous Galerkin method for non-linear solid dynamics: formulation, parallel implementation and scalability properties. Int J Numer Methods Eng. 2008;74(9):1393-1420.
Radovitzky R, Seagraves A, Tupek M, Noels L. A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput Methods Appl Mech Eng. 2011;200(14):326-344.
Prechtel M, Leugering G, Steinmann P, Stingl M. Towards optimization of crack resistance of composite materials by adjustment of fiber shapes. Eng Fract Mech. 2011;78(6):944-960.
Becker G, Noels L. A full-discontinuous Galerkin formulation of nonlinear KirchhoffLove shells: elasto-plastic finite deformations, parallel computation, and fracture applications. Int J Numer Methods Eng. 2013;93(1):80-117.
Wu L, Tjahjanto D, Becker G, Makradi A, Jerusalem A, Noels L. A micromeso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method. Eng Fract Mech. 2013;104:162-183.
Nguyen VP. Discontinuous Galerkin/extrinsic cohesive zone modeling: implementation caveats and applications in computational fracture mechanics. Eng Fract Mech. 2014;128:37-68.
Hansbo P, Salomonsson K. A discontinuous galerkin method for cohesive zone modelling. Finite Elem Anal Des. 2015;102103:1-6.
Mediavilla J, Peerlings RHJ, Geers MGD. Discrete crack modelling of ductile fracture driven by non-local softening plasticity. Int J Numer Methods Eng. 2006;66(4):661-688.
Moes N, Stolz C, Bernard P-E, Chevaugeon N. A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng. 2011;86(3):358-380.
Wu L, Becker G, Noels L. Elastic damage to crack transition in a coupled non-local implicit discontinuous Galerkin/extrinsic cohesive law framework. Comput Methods Appl Mech Eng. 2014;279:379-409.
Mazars J, Pijaudier-Cabot G. From damage to fracture mechanics and conversely: a combined approach. International Journal of Solids and Structures. 1996;33(20):3327-3342.
Dufour F, Pijaudier-Cabot G, Choinska M, Huerta A. Extraction of a crack opening from a continuous approach using regularized damage models. Comput Concrete. 2008;5(4):375-388.
Cazes F, Coret M, Combescure A, Gravouil A. A thermodynamic method for the construction of a cohesive law from a nonlocal damage model. Int J Solids Struct. 2009;46(6):1476-1490.
Cuvilliez S, Feyel F, Lorentz E, Michel-Ponnelle S. A finite element approach coupling a continuous gradient damage model and a cohesive zone model within the framework of quasi-brittle failure. Comput Methods Appl Mech Eng. 2012;237240:244-259.
Wang Y, Waisman H. From diffuse damage to sharp cohesive cracks: a coupled XFEM framework for failure analysis of quasi-brittle materials. Comput Methods Appl Mech Eng. 2016;299:57-89.
Wu CT, Ma N, Takada K, Okada H. A meshfree continuousdiscontinuous approach for the ductile fracture modeling in explicit dynamics analysis. Comput Mech. 2016;58(3):391-409.
Remmers JJC, Borst R, Verhoosel CV, Needleman A. The cohesive band model: a cohesive surface formulation with stress triaxiality. Int J Fract. 2013;181(2):177-188.
Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids. 1992;40(6):1377-1397.
Nahshon K, Hutchinson JW. Modification of the Gurson Model for shear failure. Eur J Mech - A/Solids. 2008;27(1):1-17.
Faleskog J, Barsoum I. Tensiontorsion fracture experimentsPart I: experiments and a procedure to evaluate the equivalent plastic strain. Int J Solids Struct. 2013;50(2526):4241-4257.
Xue Z, Faleskog J, Hutchinson JW. Tensiontorsion fracture experiments Part II: simulations with the extended Gurson model and a ductile fracture criterion based on plastic strain. Int J Solids Struct. 2013;50(2526):4258-4269.
Siegmund T, Brocks W. A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture. Eng Fract Mech. 2000;67(2):139-154.
Tvergaard V, Hutchinson JW. Effect of strain-dependent cohesive zone model on predictions of crack growth resistance. Int J Solids Struct. 1996;33(20):3297-3308.
Varias AG. Constraint effects during stable transient crack growth. Comput Mech. 1998;21(4-5):316-329.
Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: part I yield criteria and flow rules for porous ductile media. J Eng Mater Technol. 1977;99(1):2-15.
Tvergaard V. Predictions of mixed mode interface crack growth using a cohesive zone model for ductile fracture. J Mech Phys Solids. 2004;52(4):925-940.
Huespe AE, Needleman A, Oliver J, Sanchez PJ. A finite thickness band method for ductile fracture analysis. Int J Plast. 2009;25(12):2349-2365.
Huespe AE, Needleman A, Oliver J, Sanchez PJ. A finite strain, finite band method for modeling ductile fracture. Int J Plast. 2012;28(1):53-69.
Esmaeili A, Javili A, Steinmann P. Coherent energetic interfaces accounting for in-plane degradation. Int J Fract. 2016;202(2):135-165.
Esmaeili A, Javili A, Steinmann P. A thermo-mechanical cohesive zone model accounting for mechanically energetic kapitza interfaces. Int J Solids Struct. 2016;9293:29-44.
Esmaeili A, Steinmann P, Javili A. Non-coherent energetic interfaces accounting for degradation. Comput Mech. 2017;59(3):361-383.
Coenen EWC, Kouznetsova VG, Bosco E, Geers MGD. A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework. Int J Fract. 2012;178(1-2):157-178.
Bosco E, Kouznetsova VG, Coenen EWC, Geers MGD, Salvadori A. A multiscale framework for localizing microstructures towards the onset of macroscopic discontinuity. Comput Mech. 2014;54(2):299-319.
Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng. 2010;199(45):2765-2778.
Geers MM. Experimental analysis and computational modelling of damage and fracture. Ph.D. Thesis: Eindhoven (Netherlands); 1997.
Riks E. An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct. 1979;15(7):529-551.
Borst RD, Crisfield MA, Remmers JJC, Verhoosel CV. Nonlinear Finite Element Analysis of Solids and Structures. John Wiley & Sons, Chichester, West Sussex, United Kingdom; 2012.
Dufour F, Pijaudier-Cabot G, Choinska M, Huerta A. Extraction of a crack opening from a continuous approach using regularized damage models. Comput Concrete. 2008;5(4):375-388.
Noels L, Radovitzky R. A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications. Int J Numer Methods Eng. 2006;68(1):64-97.
Molinari JF, Gazonas G, Raghupathy R, Rusinek A, Zhou F. The cohesive element approach to dynamic fragmentation: the question of energy convergence. Int J Numer Methods Eng. 2007;69(3):484-503.
Geuzaine C, Remacle J-F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng. 2009;79(11):1309-1331.
Zhou F, Molinari J-F. Stochastic fracture of ceramics under dynamic tensile loading. Int J Solids Struct. 2004;41(2223):6573-6596.
Hulbert GM, Chung J. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng. 1996;137(2):175-188.