Article (Scientific journals)
A damage to crack transition model accounting for stress triaxiality formulated in a hybrid non-local implicit discontinuous Galerkin - cohesive band model framework
Leclerc, Julien; Wu, Ling; Nguyen, Van Dung et al.
2018In International Journal for Numerical Methods in Engineering, 113 (3), p. 374-410
Peer Reviewed verified by ORBi
 

Files


Full Text
2017_IJNME_CDMCBM.pdf
Author postprint (18.12 MB)
Download
Annexes
2017_CFRAC_DG.pdf
Publisher postprint (1.33 MB)
Presentation at CFRAC2017
Download

This is the submitted version of the paper "A damage to crack transition model accounting for stress triaxiality formulated in a hybrid non-local implicit discontinuous Galerkin - cohesive band model framework, International Journal for Numerical Methods in Engineering VOL 113, PAGE 374-410, 10.1002/nme.5618" which has been published in final form on URL 10.1002/nme.10.1002/nme.5618


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Damage; Fracture; Discontinuous Galerkin Method; Cohesive Band Method; Cohesive Zone Method; Stress Triaxiality; LIMARC
Abstract :
[en] Modelling the entire ductile fracture process remains a challenge. On the one hand, continuous damage models succeed in capturing the initial diffuse damage stage but are not able to represent discontinuities or cracks. On the other hand, discontinuous methods, as the cohesive zones, which model the crack propagation behaviour, are suited to represent the localised damaging process. However, they are unable to represent diffuse damage. Moreover, most of the cohesive models do not capture triaxiality effect. In this paper, the advantages of the two approaches are combined in a single damage to crack transition framework. In a small deformation setting, a non-local elastic damage model is associated with a cohesive model in a discontinuous Galerkin finite element framework. A cohesive band model is used to naturally introduce a triaxiality-dependent behaviour inside the cohesive law. Practically, a numerical thickness is introduced to recover a 3D-state, mandatory to incorporate the in-plane stretch effects. This thickness is evaluated to ensure the energy consistency of the method and is not a new numerical parameter. The traction-separation law is then built from the underlying damage model.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Mechanical engineering
Materials science & engineering
Author, co-author :
Leclerc, Julien ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Wu, Ling ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Nguyen, Van Dung  ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic  ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A damage to crack transition model accounting for stress triaxiality formulated in a hybrid non-local implicit discontinuous Galerkin - cohesive band model framework
Publication date :
20 January 2018
Journal title :
International Journal for Numerical Methods in Engineering
ISSN :
0029-5981
eISSN :
1097-0207
Publisher :
Wiley, Chichester, United Kingdom
Volume :
113
Issue :
3
Pages :
374-410
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
The research has been funded by the Walloon Region under the agreement no.7581-MRIPF in the context of the 16th MECATECH call
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06
Available on ORBi :
since 13 July 2017

Statistics


Number of views
262 (93 by ULiège)
Number of downloads
646 (42 by ULiège)

Scopus citations®
 
17
Scopus citations®
without self-citations
13
OpenCitations
 
15
OpenAlex citations
 
18

Bibliography


Similar publications



Contact ORBi