An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community
[en] Antarctic sea-ice bacterial community composition and dynamics in various developmental stages
were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (o4 μg l–1) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a
concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H2S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Microbiology
Author, co-author :
Eronen-Rasimus, Eeva
Luhtanen, Anne-Mari
Rintala, Janne-Markus
Delille, Bruno ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Dieckmann, Gerhard
Karkman, Antti
Tison, Jean-Louis
Language :
English
Title :
An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community
Publication date :
14 July 2017
Journal title :
ISME Journal
ISSN :
1751-7362
eISSN :
1751-7370
Publisher :
Nature Publishing Group, United Kingdom
Volume :
1-11
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
Anderson MJ. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecol 26: 32-46.
Anderson MJ. (2006). Distance-based test for homogeneity of multivariate dispersion. Biometrics 62: 245-253.
Anderson MJ, Willis TJ. (2003). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84: 511-525.
Anderson MJ, Gorley RN, Clarke KR. (2008). PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Primer-E Ltd: Plymouth, UK.
Arrigo KR. (2014). Sea ice ecosystems. Ann Rev Mar Sci 6: 439-467.
Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA. (1997). Diversity and as-sociation of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microb 63: 3068-3078.
Bowman JS, Rasmussen S, Blom N, Deming JW, Rysgaard S, Sicheritz-Ponten T. (2012). Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16 S RNA gene. ISME J 6: 11-20.
Brinkmeyer R, Knittel K, Jurgens J, Weyland H, Amann R, Helmke E. (2003). Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microb 69: 6610-6619.
Brown MV, Bowman JP. (2001). A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35: 267-275.
Chung J, Ha ES, Park HR, Kim S. (2004). Isolation and characterization of Lactobacillus species inhibiting the formation of Streptococcus mutans biofilm. Oral Microbiol Immun 19: 214-216.
Clarke KR, Gorley RN. (2006). Primer v6: User Manual/ Tutorial. Primer-E Ltd: Plymouth, UK.
Clarke KR, Warwick RM. (2001). Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. PRIMER-E: Plymouth, UK.
Collins RE, Carpenter SD, Deming JW. (2008). Spatial heterogeneity and temporal dynamics of particles, bacteria, and pEPS in Arctic winter sea ice. J Marine Syst 74: 902-917.
Collins RE, Rocap G, Deming JW. (2010). Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12: 1828-1841.
Collins RE. (2015). Microbial Evolution under Extreme Conditions. Bakermans C (Ed. ). In: Microbial Evolution under Extreme Conditions Vol. 2. Walter de Gruyter GmbH & Co KG: Göttingen, Germany.
Comiso J. (2010). Variability and trends of the global sea ice cover. In: Thomas DN, Dieckmann GS (eds). Sea Ice, 2nd edn. Wiley-Blackwell Publishing: Oxford, UK, 205-246.
Cowie RO, Williams GJ, Maas EW, Voyles KM, Ryan KG. (2014). Antarctic sea-ice microbial communities show distinct patterns of zonation in response to algalderived substrates. Aquat Microb Ecol 73: 123-134.
Delille D, Fiala M, Kuparinen J, Kuosa H, Plessis C. (2002). Seasonal changes in microbial biomass in the first-year ice of the Terre Adélie area (Antarctica). Aquat Microb Ecol 28: 257-265.
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.
Edgar RC. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10: 996-998.
Edwards U, Rogall T, Blocker H, Emde M, Bottger E. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16 S ribosomal RNA. Nucleic Acids Res 17: 7843-7853.
Eicken H, Lange MA, Wadhams P. (1994). Characteristics and distribution patterns of snow and meteoric ice in the Weddell Sea and their contribution to the mass balance of sea ice. Ann Geophysicae 12: 80-93.
Eronen-Rasimus E, Kaartokallio H, Lyra C, Autio R, Kuosa H, Dieckmann G et al. (2014). Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment. MicrobiologyOpen 3: 139-156.
Eronen-Rasimus E, Lyra C, Rintala JM, Jurgens K, Ikonen V, Kaartokallio H. (2015). Ice formation and growth shape bacterial community structure in Baltic Sea drift ice. FEMS Microbiol Ecol 9: 1-9.
Eronen-Rasimus E, Piiparinen J, Karkman A, Lyra C, Gerland S, Kaartokallio H. (2016). Bacterial communities in Arctic first-year drift ice during the winter/ spring transition. Environ Microbiol Rep 8: 527-535.
Fuhrman JA, Azam F. (1980). Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl Environ Microbiol 39: 1085-1095.
Fuhrman JA, Azam F. (1982). Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol 66: 109-120.
Garrison DL, Ackley SF, Buck KR. (1983). A physical mechanism for establishing algal populations in frazil ice. Nature 306: 363-365.
Gasol JM, Del Giorgio PA. (2000). Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64: 197-224.
Golden KM, Ackley SF, Lytle VI. (1998). The percolation phase transition in sea ice. Science 282: 2238-2241.
Grossmann S, Dieckmann GS. (1994). Bacterial standing stock, activity, and carbon production during formation and growth of sea ice in Weddell Sea, Antarctica. Appl Environ Microb 60: 2746-2753.
Haas C. (2010). Dynamics versus Thermodynamics: the sea ice thickness distribution. In: Thomas DN, Dieckmann GS (eds). Sea Ice, 2nd edn. Wiley-Blackwell Publishing: Oxford, UK, 113-151.
Hamilton N. (2016). ggtern: An Extension to 'ggplot2', for the Creation of Ternary Diagrams. R package version 2. 1. 1 https://CRAN. R-project. org/package = ggtern.
Hatam I, Charchuk R, Lange B, Beckers J, Haas C, Lanoil B. (2014). Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice. FEMS Microbiol Ecol 90: 115-125.
Hatam I, Lange B, Beckers J, Haas C, Lanoil B. (2016). Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multiyear sea ice. ISME J 10: 1-10.
Helmke E, Weyland H. (1995). Bacteria in sea ice and underlying water of the eastern Weddel sea in midwinter. Mar Ecol Prog Ser 117: 269-287.
IPCC. (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker, Qin TF, Plattner D, Tignor G-K, Allen M, Boschung SK, Nauels J, Xia A, Bex VY, Midgley PM (eds). Cambridge University Press: Cambridge, UK, pp 1-30.
Junge K, Imhoff F, Staley T, Deming JW. (2002). Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at sub-zero temperature. Microb Ecol 43: 315-328.
Kaartokallio H. (2001). Evidence for active microbial nitrogen transformations in sea ice (Gulf of Bothnia, Baltic Sea) in midwinter. Polar Biol 24: 21-28.
Kaartokallio H. (2004). Food web components, and physical and chemical properties of Baltic Sea ice. Mar Ecol Prog Ser 273: 49-63.
Kaartokallio H, Tuomainen J, Kuosa H, Kuparinen J, Martikainen PJ, Servomaa K. (2008). Succession of sea-ice bacterial communities in the Baltic Sea fast ice. Polar Biol 31: 783-793.
Kottmeier ST, Grossi SM, Sullivan CW. (1987). Sea ice microbial communities. VIII. Bacterial production in annual sea ice of McMurdo sound, Antarctica. Mar Ecol Prog Ser 35: 175-186.
Kuosa H, Kaartokallio H. (2006). Experimental evidence on nutrient and substrate limitation of Baltic sea sea-ice algae and bacteria. Hydrobiologia 554: 1-10.
Lange MA, Ackley SF, Wadhams P, Dieckmann GS, Eicken H. (1989). Development of sea ice in the Weddell Sea. Ann Glaciol 12: 92-96.
Lange MA, Schlosser P, Ackley SF, Wadhams P, Dieckmann GS. (1990). 18O concentrations in sea ice of the Weddell Sea, Antarctica. J Glaciol 36: 315-323.
Lannuzel D, De Jong J, Schoemann V, Trevena A, Tison JL, Chou L. (2006). Development of a sampling and flow injection analysis technique for iron determination in the sea ice environment. Anal Chim Acta 556: 476-483.
Lannuzel D, Schoemann V, De Jong J, Tison JL, Chou L. (2007). Distribution and biogeochemical behaviour of iron in the East Antarctic sea ice. Mar Chem 106: 18-32.
Laurion I, Demers S, Vezina AF. (1995). The microbial food web associated with the ice algal assemblage: biomass and bacterivory of nanoflagellate protozoans in Resolute Passage (High Canadian Arctic). Mar Ecol Prog Ser 120: 77-87.
Manly BFJ. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology2nd editionChapman and Hall: London.
Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17: 10-12.
McArdle BH, Anderson MJ. (2001). Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290-297.
Meiners KM, Vancoppenolle M, Thanassekos S, Dieckmann GS, Thomas DN, Tison JL et al. (2012). Chlorophyll a in Antarctic sea ice from historical ice core data. Geophys Res Lett 39: L21602.
Melnikov IA. (1998). Winter production of sea ice algae in the western Weddell Sea. J Marine Syst 17: 195-205.
Mock T, Thomas DN. (2005). Recent advances in seaice microbiology. Environ Microbiol 7: 605-619.
Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, Carlson CA et al. (2002). SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420: 806-810.
NOAA National Centers for Environmental Information, State of the Climate: Global Snow and Ice for February 2017, published online March 2017, retrieved on 21 April 2017 from https://www. Ncdc. Noaa. gov/sotc/glo bal-snow/201702.
Paulson JN, Stine OC, Bravo HC, Pop M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10: 1200-1202.
Perovich D, Gerland S, Hendricks S, Meier W, Nicolaus M, Tschudi M. (2014), Sea ice. In Arctic Report Card [WWW document]. URL http://www. arctic. Noaa. gov/ reportcard.
Petrich CP, Eicken H. (2010). Growth, structure and properties of sea ice. In: Thomas DN, Dieckmann GS (eds). Sea Ice, 2nd edn. Wiley-Blackwell Publishing: Oxford, UK, 23-77.
Piiparinen J, Kuosa H. (2011). Impact of UVA radiation on algae and bacteria in Baltic Sea ice. Aquat Microb Ecol 63: 75-87.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and webbased tools. Nucleic Acids Res 41: D590-D596.
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, ISBN 3-900051-07-0. Available online at http://www. R-pro ject. org/.
Riedel A, Michel C, Gosselin M. (2007). Grazing of largesized bacteria by sea-ice heterotrophic protists on the Mackenzie shelf during the winter-spring transition. Aquat Microb Ecol 74: 3-4.
Rysgaard S, Glud RN. (2004). Anaerobic N2 production in Arctic sea ice. Limnol Oceanogr 49: 86-94.
Schlitzer R. (2016), Ocean Data View https://odv. awi. de.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann ME, Hollister B et al. (2009). Introducing Mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541.
Smith RE, Clement P. (1990). Heterotrophic activity and bacterial productivity in assemblages of microbes from sea ice in the high Arctic. Polar Biol 10: 351-357.
Stewart FJ, Fritsen CH. (2004). Bacteria-algae relationships in Antarctic sea ice. Antarct Sci 16: 143-156.
Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D. (2008). Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J Geophys Res-Oceans 113: C3.
Sullivan CW, Palmisano AC. (1984). Sea ice microbial communities: distribution, abundance, and diversity of ice bacteria in McMurdo sound, Antarctica, in 1980. Appl Environ Microbiol 47: 788-795.
Tison J-L, Delille B, de Jong J, Janssens J, Dieckmann G, Gussone N et al. (2014). Sea ice tBiogeochemistry. In: Lemke P (ed). The Expedition of the Research Vessel 'Polarstern' to the Antarctic in 2013 (ANT-XXIX/6). Reports on Polar and Marine Research 679, ISSN 1866-3192 http://hdl. handle. Net/10013/epic. 44124.
Torstensson A, Dinasquet J, Chierici M, Fransson A, Riemann L, Wulff A. (2015). Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice. Environ Microbiol 17: 3869-3881.
UNESCO. (1981). Tenth report of the joint panel on oceanographic tables and standards. United Nations Educational, Scientific and Cultural Organization (UNESCO) technical papers in marine science 36.
Wickham H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag: New York.
Zhang J, Kobert K, Flouri T, Stamatakis A. (2014). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30: 614-620.