Alizadeh, A., Akbari, P., Difilippo, E., Schols, H.A., Ulfman, L.H., Schoterman, M.H.C., Garssen, J., Fink-Gremmels, J., Braber, S., The piglet as a model for studying dietary components in infant diets: effects of galacto-oligosaccharides on intestinal functions. Br. J. Nutr. 115 (2015), 605–618, 10.1017/S0007114515004997.
Amdi, C., Krogh, U., Flummer, C., Oksbjerg, N., Hansen, C.F., Theil, P.K., Intrauterine growth restricted piglets defined by their head shape ingest insufficient amounts of colostrum. J. Anim. Sci. 91 (2013), 5605–5613.
Andersen, A.D., Sangild, P.T., Munch, S.L., van der Beek, E.M., Renes, I.B., Ginneken, C., Greisen, G.O., Thymann, T., Delayed growth, motor function and learning in preterm pigs during early postnatal life. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310 (2016), R481–R492.
Arnal, M.E., Zhang, J., Messori, S., Bosi, P., Smidt, H., Lallès, J.P., Early changes in microbial colonization selectively modulate intestinal enzymes, but not inducible heat shock proteins in young adult swine. PLoS One, 9, 2014, 10.1371/journal.pone.0087967.
Ashworth, C.J., Finch, A.M., Page, K.R., Nwagwu, M.O., McArdle, H.J., Causes and consequences of fetal growth retardation in pigs. Control Pig Prod. VI 58 (2001), 233–246.
Bach, T.A., Carey, H.V., Developmental-Changes in neurally-mediated ion-transport in piglet distal colon. Pediatr. Res. 36 (1994), 144–151.
Bailey, M., Haverson, K., Inman, C., Harris, C., Jones, P., Corfield, G., Miller, B., Stokes, C., The development of the mucosal immune system pre- and post-weaning: balancing regulatory and effector function. Proc. Nutr. Soc. 64 (2005), 451–457.
Baintner, K., Intestinal Absorption of Macromolecules and Immune Transmission from Mother to Young. 1986, CRC Press, Boca Raton, Fl, 1–216.
Baker, A.A., Davis, E., Spencer, J.D., Moser, R., Rehberger, T., The effect of a Bacillus-based direct-fed microbial supplemented to sows on the gastrointestinal microbiota of their neonatal piglets. J. Anim. Sci. 91 (2013), 3390–3399, 10.2527/jas.2012-5821.
Barman, N.N., Bianchi, A.T.J., Zwart, R.J., Pabst, R., Rothkotter, H.J., Jejunal and ileal Peyer's patches in pigs differ in their postnatal development. Anat. Embryol. Berl. 195 (1997), 41–50.
Beaulieu, A.D., Aalhus, J.L., Williams, N.H., Patience, J.F., Impact of piglet birth weight, birth order and litte size on subsequent growth performance, carcass quality, muscle composition and eating quality of pork. J. Anim. Sci. 88 (2010), 2767–2778.
Bee, G., Birth weight of litters as a source of variation in postnatal growth, and carcass and meat quality. Adv. Pork Prod. 18 (2007), 191–196.
Benight, N.M., Stoll, B., Olutoye, O.O., Holst, J.J., Burrin, D.G., GLP-2 delays but does not prevent the onset of necrotizing enterocolitis in preterm pigs. J. Pediatr. Gastroenterol. Nutr. 56 (2013), 623–630.
Bian, G., Ma, S., Zhu, Z., Su, Y., Zoetendal, E.G., Mackie, R., Liu, J., Mu, C., Huang, R., Smidt, H., Zhu, W., Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environ. Microbiol. 18 (2016), 1566–1577, 10.1111/1462-2920.13272.
Bianchi, A., Zwart, R., Jeurissen, S., Moonenleusen, H., Development of the B-cell and T-cell compartments in porcine lymphoid organs from birth to adult life – an immunohistological approach. Vet. Immunol. Immunopathol. 33 (1992), 201–221.
Biernat, M., Wolinski, J., Godlewski, M.M., Motyl, T., Morisset, J., Zabielski, R., Apoptosis in the gut of neonatal piglets. Proceedings of the 9th International Symposium on Digestive Physiology in Pigs, University of Alberta, Edmonton, Canada, 2003, 46–48.
Birck, M.M., Nguyen, D.N., Cilieborg, M.S., Kamal, S.S., Nielsen, D.S., Damborg, P., Olsen, J.E., Lauridsen, C., Sangild, P.T., Thymann, T., Enteral but not parenteral antibiotics enhance gut function and prevent necrotizing enterocolitis in formula-fed newborn preterm pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 310 (2016), G323–G333.
Bjornvad, C.R., Thymann, T., Deutz, N.E., Burrin, D.G., Jensen, S.K., Jensen, B.B., Molbak, L., Boye, M., Larsson, L.I., Schmidt, M., Michaelsen, K.F., Sangild, P.T., Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition. Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008), G1092–G1103.
Bontempo, V., Sciannimanico, D., Pastorelli, G., Rossi, R., Rosi, F., Corino, C., In lactating sows and piglets 1, 2. J. Nutr., 2004, 817–824.
Boudry, G., Morise, A., Seve, B., Le Huërou-Luron, I., Effect of milk formula protein content on intestinal barrier function in a porcine model of LBW neonates. Pediatr. Res. 69 (2011), 4–9.
Boudry, G., Jamin, A., Chatelais, L., Gras-Le Guen, C., Michel, C., Le Huërou-Luron, I., Dietary protein excess during neonatal life alters colonic microbiota and mucosal response to inflammatory mediators later in life in female pigs. J. Nutr. 143 (2013), 1225–1232.
Le Bourgot, C., Ferret-Bernard, S., Le Normand, L., Savary, G., Menendez-Aparicio, E., Blat, S., Appert-Bossard, E., Respondek, F., Le Huërou-Luron, I., Maternal short-chain fructooligosaccharide supplementation influences intestinal immune system maturation in piglets. PLoS One 9 (2014), 1–12, 10.1371/journal.pone.0107508.
Brambell, F.W.R., The Transmission of Passive Immunity from Mother to Young. 1970, North-Holland Publ. Company, Amsterdam, 1–385.
Braude, R., Newport, M.J., Porter, J.W.G., Artificial Rearing of Pigs.2. Time course of milk protein digestion and proteolytic enzyme secretion in 28-day-old pig. Br. J. Nutr. 24 (1970), 827–842.
Buddington, R.K., Malo, C., Intestinal brush-border membrane enzyme activities and transport functions during prenatal development of pigs. J. Pediatr. Gastroenterol. Nutr. 23 (1996), 51–64.
Buddington, R.K., Sanglid, P.T., Companion animals symposium: development of the mammalian gastrointestinal tract, the resident microbiota, and the role of diet in early life. J. Anim. Sci. 89 (2011), 1506–1519.
Buddington, R.K., Elnif, J., Puchal-Gardiner, A.A., Sangild, P.T., Intestinal apical amino acid absorption during development of the pig. Am. J. Physiol. – Reg. Integr. Comp. Physiol. 280 (2001), R241–R247.
Buddington, R.K., Bering, S.B., Thymann, T., Sangild, P.T., Aldohexose malabsorption in preterm pigs is directly related to the severity of necrotizing enterocolitis. Pediatr. Res. 63 (2008), 382–387.
Burkey, T.E., Skjolaas, K.A., Minton, J.E., Board-invited review: porcine mucosal immunity of the gastrointestinal tract. J. Anim. Sci. 87 (2009), 1493–1501.
Butler, J.E., Santiago-Mateo, K., Wertz, N., Sun, X., Sinkora, M., Francis, D.L., Antibody repertoire development in fetal and neonatal piglets. XXIV. Hypothesis The ileal Peyer patches, IPP are the major source of primary, undiversified IgA antibodies in newborn piglets. Dev. Comp. Immunol. 65 (2016), 340–351.
Carver, J.D., Barness, L.A., Trophic factors for the gastrointestinal tract. Clin. Perinatol. 23 (1996), 265–285.
Cera, K.R., Mahan, D.C., Cross, R.F., Reinhart, G.A., Whitmoyer, R.E., Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J. Anim. Sci. 66 (1988), 574–584.
Chatelais, L., Jamin, A., Guen, C.G., Le Lallès, J.P., le Huërou-Luron, I., Boudry, G., The level of protein in milk formula modifies ileal sensitivity to LPS later in life in a piglet model. PLoS One 6 (2011), 1–10, 10.1371/journal.pone.0019594.
Che, L., Thymann, T., Bering, S.B., Le Huërou-Luron, I., D'Inca, R., Zhang, K., Sangild, P.T., IUGR does not predispose to necrotizing enterocolitis or compromise postnatal intestinal adaptation in preterm pigs. Pediatr. Res. 67 (2010), 54–59.
Cilieborg, M.S., Boye, M., Molbak, L., Thymann, T., Sangild, P.T., Preterm birth and necrotizing enterocolitis alter gut colonization in pigs. Pediatr. Res. 69 (2011), 10–16.
Cilieborg, M.S., Boye, M., Thymann, T., Jensen, B.B., Sangild, P.T., Diet-dependent effects of minimal enteral nutrition on intestinal function and necrotizing enterocolitis in preterm pigs. J. Parenter. Enter. Nutr. 35 (2011), 32–42.
Cilieborg, M.S., Thymann, T., Siggers, R., Boye, M., Bering, S.B., Jensen, B.B., Sangild, P.T., The incidence of necrotizing enterocolitis is increased following probiotic administration to preterm pigs. J. Nutr. 141 (2011), 223–230.
Cooper, J.E., The use of the pig as an animal model to study problems associated with low birthweight. Lab. Anim. 9 (1975), 329–336.
Corino, C., Pastorelli, G., Rosi, F., Bontempo, V., Rossi, R., Effect of dietary conjugated linoleic acid supplementation in sows on performance and immunoglobulin concentration in piglets. J. Anim. Sci. 87 (2009), 2299–2305, 10.2527/jas.2008-1232.
Costeloe, K., Bowler, U., Brocklehurst, P., Hardy, P., Heal, P., Juszczak, E., King, A., Panton, N., Stacey, F., Whiley, A., Wilks, M., Millar, M.R., A randomised controlled trial of the probiotic Bifidobacterium breve BBG-001 in preterm babies to prevent sepsis, necrotising enterocolitis and death: the Probiotics in Preterm infantS (PiPS) trial. Health Technol. Assess. 20 (2016), 1–194.
Cranwell, P.D., The development of acid and pepsin (EC 3.4.23.1) secretory capacity in the pig: the effects of age and weaning. Br. J. Nutr. 54 (1985), 305–320.
Cranwell, P.D., Development of the neonatal gut and enzyme systems. Varley, M.A., (eds.) The Neonatal Pig, Development and Survival., 1995, CAB international, Wallingford UK, 99–154.
Cremaschi, D., Ferguson, D.R., Henin, S., James, P.S., Meyer, G., Smith, M.W., Postnatal-Development of amiloride sensitive sodium-transport in pig distal colon. J. Physiol. 292 (1979), 481–494.
Czech, A., Grela, E.R., Mokrzycka, A., Pejsak, Z., Efficacy of mannanoligosaccharides additive to sows diets on colostrum, blood immunoglobulin content and production parameters of piglets. Pol. J. Vet. Sci. 13 (2010), 525–531.
D'Inca, R., Kloareg, M., Gras-Le Guen, C., Le Huërou-Luron, I., Intrauterine growth restriction modifies the developmental pattern of intestinal structure, transcriptomic profile and bacterial colonization in neonatal piglets. J. Nutr. 140 (2010), 925–931.
D'Inca, R., Gras-Le Guen, C., Che, L., Sangild, P.T., Le Huërou-Luron, I., Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs. Neonatology 99 (2011), 208–216.
De Vos, M., Che, L., Huygelen, V., Willemen, S.A., Michiels, J., Van Cruchten, S., Van Ginneken, C., Nutritional interventions to prevent and rear low-birthweight piglets. J. Anim. Physiol. Anim. Nutr. 98 (2014), 609–619.
De Vos, M., Huygelen, V., Willemen, S., Fransen, E., Casteleyn, C., Van Cruchten, S., Michiels, J., Van Ginneken, C., Artificial rearing of piglets: effects on small intestinal morphology and digestion capacity. Livest. Sci. 159 (2014), 165–173, 10.1016/j.livsci.2013.11.012.
Decuypere, J.A., Dendooven, R.M., Henderickx, H.K., Stomach emptying of milk diets in pigs: a mathematical model allowing description and comparison of the emptying pattern. Arch. Tierernahr. 36 (1986), 679–696.
Dethlefsen, L., McFall-Ngai, M., Relman, D.A., An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449 (2017), 811–818.
Devillers, N., Lessard, M., New concepts related to the importance of colostrum for modern pig production. Proceedings from 43rd Eastern Nutrition Conference of the Animal Nutrition Association of Canada, Quebec City, Quebec, Canada, 2007.
Donnet-Hughes, A., Duc, N., Serrant, P., Vidal, K., Schiffrin, E.J., Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta. Immunol. Cell Biol. 78 (2000), 74–79 icb882 [pii].
Ekström, G.M., Weström, B.R., Telemo, E., Karlsson, B.W., The uptake of fluorescein-conjugated dextran 70.000 by the small intestinal epithelium of the young rat and pig in relation to macromolecular transmission into blood. J. Develop. Physiol. 10 (1988), 227–233.
Ewing, W.N., Tucker, L.A., The Living Gut. 2nd ed., 2008, Nottingham University press.
Ferenc, K., Pietrzak, P., Godlewski, M.M., Piwowarski, J., Kilianczyk, R., Guilloteau, P., Zabielski, R., Intrauterine growth retarded piglet as a model for humans – studies on the perinatal development of gut structure and function. Reprod. Biol. 14 (2014), 51–60.
Georgieva, R., Gerov, K., The morphological and functional differentiation of the alimentary canal of the pig during ontogeny: I. Development and differentiation of the fundic portion of the stomach. Anat. Anz. 137 (1975), 12–15.
Georgieva, R., Gerov, K., The morphological and functional differentiation of the alimentary canal of the pig during ontogeny II. Development and differentiation of the jejunum. Anat. Anz. 137 (1975), 16–20.
Godlewski, M.M., Slupecka, M., Wolinski, J., Skrzypek, T., Skrzypek, H., Motyl, T., Zabielski, R., Into the unknown- The death pathways in the neonatal gut epithelium. J. Physiol. Pharmacol. 56:Suppl. 3 (2005), 7–24.
Godlewski, M.M., Hallay, N., Bierla, J.B., Zabielski, R., Molecular mechanism of programmed cell death in the gut epithelium of neonatal piglets. J. Physiol. Pharmacol. 58 (2007), 97–113.
Gondret, F., Lefaucheur, L., Louveau, I., Lebret, B., Pichodo, X., Le Cozler, Y., Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight. Prev. Vet. Med. 56 (2002), 119–127.
Grześkowiak, Ł., Zentek, J., Vahjen, W., Determination of the extent of Clostridium difficile colonisation and toxin accumulation in sows and neonatal piglets. Anaerobe 40 (2016), 5–9.
Gupta, A., Paria, A., Etiology and medical management of NEC. Early Hum. Dev. 97 (2016), 17–23.
Hall, P.A., Coates, P.J., Ansari, B., Hopwood, D., Regulation of cell number in the mammalian gastrointestinal-tract – the importance of apoptosis. J. Cell Sci. 107 (1994), 3569–3577.
Hansen, C.F., Thymann, T., Andersen, A.D., Holst, J.J., Hartmann, B., Hilsted, L., Langhorn, L., Jelsing, J., Sangild, P.T., Rapid gut growth but persistent delay in digestive function in the postnatal period of preterm pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 310 (2016), G550–G560.
Hansen, M.B., The enteric nervous system II: Gastrointestinal functions. Pharmacol. Toxicol. 92 (2003), 249–257.
Heim, G., Sweeney, T., O'Shea, C.J., Doyle, D.N., O'Doherty, J.V., Effect of maternal dietary supplementation of laminarin and fucoidan, independently or in combination, on pig growth performance and aspects of intestinal health. Anim. Feed Sci. Technol. 204 (2015), 28–41, 10.1016/j.anifeedsci.2015.02.007.
Henning, S.J., Rubin, D.C., Shulman, R.J., Ontogeny of the intestinal mucosa. Johnson, L.R., (eds.) Physiology of the Gastrointestinal Tract, 3rd ed., 1994, Raven Press, New York, 571–610.
Hinnebusch, B.F., Henderson, J.W., Siddique, A., Malo, M.S., Zhang, W., Abedrapo, M.A., Hodin, R.A., Transcriptional activation of the enterocyte differentiation marker intestinal alkaline phosphatase is associated with changes in the acetylation state of histone H3 at a specific site within its promoter region in vitro. J. Gastrointest. Surg. 7 (2003), 237–245.
Howard, M.D., Gordon, D.T., Pace, L.W., Garleb, K.A., Kerley, M.S., Effects of dietary supplementation with fructooligosaccharides on colonic microbiota populations and epithelial cell proliferation in neonatal pigs. J. Pediatr. Gastroenterol. Nutr. 21 (1995), 297–303.
Huygelen, V., De Vos, M., Willemen, S., Fransen, E., Casteleyn, C., Van Cruchten, S., Van Ginneken, C., Age-related differences in mucosal barrier function and morphology of the small intestine in low and normal birth weight piglets. J. Anim. Sci. 92 (2014), 3398–3406.
Huygelen, V., De Vos, M., Prims, S., Vergauwen, H., Fransen, E., Casteleyn, C., Van Cruchten, S., Van Ginneken, C., Birth weight has no influence on the morphology, digestive capacity and motility of the small intestine in suckling pigs. Livest. Sci. 182 (2015), 129–136.
Inman, C.F., Singha, S., Lewis, M., Bradley, B., Stokes, C., Bailey, M., Dendritic cells interact with CD4T cells in intestinal mucosa. J. Leukoc. Biol. 88 (2010), 571–578.
Inman, C.F., Haverson, K., Konstantinov, S.R., Jones, P.H., Harris, C., Smidt, H., Miller, B., Bailey, M., Stokes, C., Rearing environment affects development of the immune system in neonates. Clin. Exp. Immunol. 160 (2010), 431–439.
Inman, C.F., Laycock, G.M., Mitchard, L., Harley, R., Warwick, J., Burt, R., van Diemen, P.M., Stevens, M., Bailey, M., Neonatal colonisation expands a specific intestinal antigen-Presenting cell subset prior to CD4 T-Cell expansion, without altering T-cell repertoire. PLoS One, 7, 2012.
Jensen, A.R., Elnif, J., Burrin, D.G., Sangild, P.R., Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet dependent. J. Nutr. 131 (2001), 3259–3265.
Jensen, M.L., Thymann, T., Cilieborg, M.S., Lykke, M., Molbak, L., Jensen, B.B., Schmidt, M., Kelly, D., Mulder, I., Burrin, D.G., Sangild, P.T., Antibiotics modulate intestinal immunity and prevent necrotizing enterocolitis in preterm neonatal piglets. Am. J. Physiol. Gastrointest. Liver Physiol. 306 (2014), G59–G71.
Johnson-Henry, K.C., Abrahamsson, T.R., Wu, R.Y., Sherman, P.M., Probiotics, prebiotics, and synbiotics for the prevention of necrotizing enterocolitis. Adv. Nutr. 7 (2016), 928–937.
Kidder, D.E., Manners, M.J., Passage of food in young suckling pig. Proc. Nutr. Soc. 27 (1968), A46–A47.
Kim, H.B., Borewicz, K., White, B.A., Singer, R.S., Sreevatsan, S., Tu, Z.J., Isaacson, R.E., Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet. Microbiol. 153 (2011), 124–133.
Klein, R.M., Small intestinal cell proliferation during development. Lebenthal, E., (eds.) Human Gastrointestinal Development, 1989, Raven Press, New York, 367–394.
Koenig, J.E., Spor, A., Scalfone, N., Fricker, A.D., Stombaugh, J., Knight, R., Angenent, L.T., Ley, R.E., Succession of microbial consortia in the developing infant gut microbiome. PNAS 108 (2011), 4578–4585.
Kubasova, T., Davidova-Gerzova, L., Merlot, E., Medvecky, M., Polansky, O., Gardan-Salmon, D., Quesnel, H., Rychlik, I., Housing systems influence gut microbiota composition of sows but not of their piglets. PLoS One, 12, 2017, e0170051.
Lamendella, R., Domingo, J.W.S., Ghosh, S., Martinson, J., Oerther, D.B., Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol., 11, 2011, 103.
Le Huërou-Luron, I., Production and gene expression of brush border dissaccharidases and peptidases during development in pigs and calves. Zabielski, R., Gregory, P.C., Weström, B., (eds.) Biology of the Intestine in Growing Animals, 2002, Elsevier Science, Amsterdam, 491–513.
Lecce, J.G., Effect of Dietary Regimen on Cessation of Uptake of Macromolecules by piglet intestinal epithelium (closure) and transport to blood. J. Nutr. 103 (1973), 751–756.
Leonard, S.G., Sweeney, T., Bahar, B., O'Doherty, J.V., Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge. J. Anim. Sci. 90 (2012), 505–514, 10.2527/jas.2010-3243.
Lewis, M.C., Inman, C.F., Patel, D., Schmidt, B., Mulder, I., Miller, B., Gill, B.P., Pluske, J., Kelly, D., Stokes, C.R., et al. Direct experimental evidence that early-life farm environment influences regulation of immune responses. Pediatr. Allergy Immunol. 23 (2012), 265–269.
Ley, R.E., Peterson, D.A., Gordon, J.I., Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124 (2006), 837–848.
Looft, T., Allen, H.K., Cantarel, B.L., Levine, U.Y., Bayles, D.O., Alt, D.P., Henrissat, B., Stanton, T.B., Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 8 (2014), 1566–1576.
Low, A.G., Nutritional regulation of gastric secretion, digestion and emptying. Nutr. Res. Rev. 3 (1990), 229–252.
Macha, M., Taras, D., Vahjen, W., Arini, A., Simon, O., Specific enumeration of the probiotic strain Enterococcus faecium NCIMB 10415 in the intestinal tract and in faeces of piglets and sows. Arch. Anim. Nutr. 58 (2004), 443–452, 10.1080/00039420400020058.
Makala, L.H.C., Kamada, T., Nishikawa, Y., Nagasawa, H., Igarashi, I., Fujisaki, K., Suzuki, N., Mikami, T., Haverson, K., Bailey, M., et al. Ontogeny of pig discrete Peyer's patches: distribution and morphometric analysis. Pathobiology 68 (2000), 275–282.
McPherson, R.L., Ji, F., Wu, G., Blanton, J.R., Kim, S.W., Growth and compositional changes of fetal tissues in pigs. J. Anim. Sci. 82 (2004), 2534–2540.
Merrifield, C.A., Lewis, M., Berger, B., Cloarec, O., Heinzmann, S.S., Charton, F., Krause, L., Levin, N.S., Duncker, S., Mercenier, A., Holmes, E., Bailey, M., Nicholson, J.K., Neonatal environment exert a sustained influence on the development of the intestinal microbiota and metabolic phenotype. ISME J. 10 (2015), 145–157.
Mickiewicz, M., Zabielski, R., Grenier, B., Le Normand, L., Savary, G., Holst, J.J., Oswald, I.P., Metges, C.C., Guilloteau, P., Structural and functional development of small intestine in intrauterine growth retarded porcine offspring born to gilts fed diets with differing protein ratios throughout pregancy. J. Physiol. Pharmacol. 63 (2012), 225–239.
Miller, M.S., Galligan, J.J., Burks, T.F., Accurate measurement of intestinal transit in the rat. J. Pharmacol. Methods 6 (1981), 211–217.
Mitre, R., Etienne, M., Martinais, S., Salmon, H., Allaume, P., Legrand, P., Legrand, A.B., Humoral defence improvement and haematopoiesis stimulation in sows and offspring by oral supply of shark-liver oil to mothers during gestation and lactation. Br. J. Nutr. 94 (2005), 753–762, 10.1079/BJN20051569.
Moller, H.K., Thymann, T., Fink, L.N., Frokiaer, H., Kvistgaard, A.S., Sangild, P.T., Bovine colostrum is superior to enriched formulas in stimulating intestinal function and necrotising enterocolitis resistance in preterm pigs. Br. J. Nutr. 105 (2011), 44–53.
Montedonico, S., Paran, T.S., Pirker, M., Rolle, U., Puri, P., Developmental changes in submucosal nitrergic neurons in the porcine distal colon. J. Pediatr. Surg. 41 (2006), 1029–1035.
Moughan, P.J., Cranwell, P.D., Smith, W.C., An evaluation with piglets of bovine milk, hydrolyzed bovine milk, and isolated soybean proteins included in infant milk formulas: II. Stomach-emptying rate and the postprandial change in gastric pH and milk-clotting enzyme activity. J. Pediatr. Gastroenterol. Nutr. 12 (1991), 253–259.
Mulder, I.E., Schmidt, B., Stokes, C.R., Lewis, M., Bailey, M., Aminov, R.I., Prosser, J.I., Gill, B.P., Pluske, J.R., Mayer, C.-D., et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol., 7, 2009.
Mulder, I.E., Schmidt, B., Lewis, M., Delday, M., Stokes, C.R., Bailey, M., Aminov, R.I., Gill, B.P., Pluske, J.R., Mayer, C.-D., et al. Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PLoS One, 6, 2011, e28279.
Nguyen, T.V., Yuan, L., Azevedo, M.S.P., Jeong, K.I., Gonzalez, A.M., Saif, L.J., Transfer of maternal cytokines to suckling piglets: in vivo and in vitro models with implications for immunomodulation of neonatal immunity. Vet. Immunol. Immunopathol. 117 (2007), 236–248, 10.1016/j.vetimm.2007.02.013.
Nguyen, D.N., Fuglsang, E., Jiang, P., Birck, M.M., Pan, X., Kamal, S.B., Pors, S.E., Gammelgaard, P.L., Nielsen, D.S., Thymann, T., Levy, O., Frokiaer, H., Sangild, P.T., Oral antibiotics increase blood neutrophil maturation and reduce bacteremia and necrotizing enterocolitis in the immediate postnatal period of preterm pigs. Innate Immun. 22 (2016), 51–62.
Olsson, C., Holmgren, S., Autonomic control of gut motility: a comparative view. Auton. Neurosci. 165 (2011), 80–101.
Oste, M., De Vos, M., Van Haver, E., Van Brantegem, L., Thymann, T., Sangild, P., Weyns, A., Van Ginneken, C., Parenteral and enteral feeding in preterm piglets differently affects extracellular matrix proteins: enterocyte proliferation and apoptosis in the small intestine. Br. J. Nutr. 104 (2010), 989–997.
Ostergaard, M.V., Bering, S.B., Jensen, M.L., Thymann, T., Purup, S., Diness, M., Schmidt, M., Sangild, P.T., Modulation of intestinal inflammation by minimal enteral nutrition with amniotic fluid in preterm pigs. J. Parenter. Enter. Nutr. 38 (2014), 576–586.
Paßlack, N., Vahjen, W., Zentek, J., Dietary inulin affects the intestinal microbiota in sows and their suckling piglets. BMC Vet. Res., 11, 2015, 51, 10.1186/s12917-015-0351-7.
Pabst, R., Rothkotter, H., Binns, R., Peyers-Patches differ in their postnatal-Development, lymphocyte subsets and entry of lymphocytes and lymphoblasts., Elsevier Science Publ BV Amsterdam Frontiers of Mucosal Immunology, International Congress Series, vol 939, 1991.
Paredes, S.P., Jansman, A.J., Verstegen, M.W., Awati, A.A., Buist, W., den Hartog, L.A., van Hees, H.M., Quiniou, N., Hendriks, W.H., Gerrits, W.J., Analysis of factors to predict piglet body weight at the end of the nursery phase. J. Anim. Sci. 90 (2012), 3243–3251.
Patterson, R., Connor, M.L., Krause, D.O., Nyachoti, C.M., Response of piglets weaned from sows fed diets supplemented with conjugated linoleic acid (CLA) to an Escherichia coli K88+ oral challenge. Animal 2 (2008), 1303–1311, 10.1017/S1751731108002309.
Payne, L.C., Marsh, C.L., Gamma globulin absorption in baby pig –nonselective absorption of heterologous globulins and factors influencing absorption time. J. Nutr. 76 (1962), 151–158.
Peng, L., Li, Z.-R., Green, R.S., Holzman, I.R., Lin, J., Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 139 (2009), 1619–1625.
Pieper, R., Zetzsche, A., Röhe, I., Tedin, L., Kröger, S., Vahjen, W., Zentek, J., Bovine milk-based formula leads to early maturation-like morphological, immunological and functional changes in the jejunum of neonatal piglets. J. Anim. Sci. 94 (2016), 989–999.
Pieper, R., Vahjen, W., Zentek, J., Intestinal lactose and mineral concentration affect the microbial ecophysiology along the gastrointestinal tract of formula fed neonatal piglets. J. Anim. Sci. 94 (2016), 3786–3795.
Pierzynowski, S.G., Weström, B.R., Svendsen, J., Svendsen, L., Karlsson, B.W., Development and regulation of porcine pancreatic function. Int. J. Pancreatol. 18 (1995), 81–94.
Pluske, J.R., Hampson, D.J., Williams, I.H., Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51 (1997), 215–236.
Poroyko, V., White, J.R., Wang, M., Donovan, S., Alverdy, J., Liu, D.C., Morowitz, M.J., Gut microbial gene expression in mother-fed and formula-fed piglets. PLoS One, 5, 2010, 10.1371/journal.pone.0012459.
Potten, C.S., Epithelial cell growth and differentiation. 2. Intestinal apoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 273 (1997), G253–G257.
Prims, S., Tambuyzer, B.R., Vergauwen, H., Huygelen, V., Van Cruchten, S., Van Ginneken, C., Casteleyn, C., Intestinal immune cell quantification and gram type classification of the adherent microbiota in conventionally and artificially reared: normal and low birth weight piglets. Livest. Sci. 185 (2016), 1–7.
Quiniou, N., Gaudré, J.D., Variation of piglets' birth weight and consequences on subsequent performance. Livest. Prod. Sci. 78 (2002), 63–70.
Ramayo-Caldas, Y., Mach, N., Lepage, P., Levenez, F., Denis, C., Lemonnier, G., Leplat, J.-J., Billon, Y., Berri, M., Doré, J., Rogel-Gaillard, C., Estellé, J., Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J. 10 (2016), 2973–2977.
Rothkötter, H.J., Pabst, R., Lymphocyte subsets in jejunal and ileal Peyer's patches of normal and gnotobiotic minipigs. Immunology 67 (1989), 103–108.
Salcedo, J., Frese, S.A., Mills, D.A., Barile, D., Characterization of porcine milk oligosaccharides during early lactation and their relation to the fecal microbiome. J. Dairy Sci. 99 (2016), 7733–7743.
Sanderson, I.R., Walker, A., Uptake and transport of macromolecules by the intestine: possible role in clinical disorders (an update). Gastroenterology 104 (1993), 622–639.
Sangild, P.T., Foltmann, B., Cranwell, P.D., Development of gastric proteases in fetal pigs and pigs from birth to thirthy six days of age: the effect of adrenocroticotropin (ACTH). J. Dev. Physiol. 16 (1991), 229–238.
Sangild, P.T., Cranwell, P.D., Hilsted, L., Ontogeny of gastric function in the pig: acid secretion and the synthesis and secretion of gastrin. Biol. Neonate 62 (1992), 363–372.
Sangild, P.R., Trahair, J.F., Loftager, M.K., Fowden, A.L., Intestinal macromolecule absorption in the fetal pig after infusion of colostrum in utero. Pediatr. Res. 45 (1999), 595–602.
Sangild, P.T., Schmidt, M., Elnif, J., Bjornvad, C.R., Westrom, B.R., Buddington, R.K., Prenatal development of gastrointestinal function in the pig and the effects of fetal esophageal obstruction. Pediatr. Res. 52 (2002), 416–424.
Sangild, P.T., Siggers, R.H., Schmidt, M., Elnif, J., Bjornvad, C.R., Thymann, T., Grondahl, M.L., Hansen, A.K., Jensen, S.K., Boye, M., Moelbak, L., Buddington, R.K., Westrom, B.R., Holst, J.J., Burrin, D.G., Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology 130 (2006), 1776–1792.
Sangild, P.T., Thymann, T., Schmidt, M., Stoll, B., Burrin, D.G., Buddington, R.K., Invited review: the preterm pig as a model in pediatric gastroenterology. J. Anim Sci. 91 (2013), 4713–4729.
Sawh, S.C., Deshpande, S., Jansen, S., Reynaert, C.J., Jones, P.M., Prevention of necrotizing enterocolitis with probiotics: a systematic review and meta-analysis. Peer J., 4, 2016, e2429.
Schmidt, B., Mulder, I.E., Musk, C.C., Aminov, R.I., Lewis, M., Stokes, C.R., Bailey, M., Prosser, J.I., Gill, B.P., Pluske, J.R., et al. Establishment of normal gut microbiota is compromised under excessive hygiene conditions. PLoS One, 6, 2011, e28284.
Schutte, J.B., de Jong, J., van Weerden, E.J., Tamminga, S., Nutritional implications of L-arabinose in pigs. Br. J. Nutr. 68 (1992), 195–207, 10.1079/BJN19920077.
Sepulveda, F.V., Smith, M.W., Inadequacy of the 'simple diffusion and mediated transport' model to describe amino acid influx into rabbit ileum. J. Physiol., 291, 1979, 58.
Siggers, R.H., Siggers, J., Boye, M., Thymann, T., Molbak, L., Leser, T., Jensen, B.B., Sangild, P.T., Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. J. Nutr. 138 (2008), 1437–1444.
Siggers, J., Ostergaard, M.V., Siggers, R.H., Skovgaard, K., Molbak, L., Thymann, T., Schmidt, M., Moller, H.K., Purup, S., Fink, L.N., Frokiaer, H., Boye, M., Sangild, P.T., Bering, S.B., Postnatal amniotic fluid intake reduces gut inflammatory responses and necrotizing enterocolitis in preterm neonates. Am. J. Physiol. Gastrointest. Liver Physiol. 304 (2013), G864–G875.
Sinkora, M., Stepanova, K., Butler, J.E., Francis, D., Santiago-Mateo, K., Potockova, H., Karova, K., Sinkorova, J., Ileal peyer's patches are not necessary for systemic B cell development and maintenance and do not contribute significantly to the overall B cell pool in swine. J. Immunol. 187 (2011), 5150–5161.
Skrzypek, T., Valverde Piedra, J.L., Skrzypek, H., Wolinski, J., Kazimierczak, W., Szymanczyk, S., Pawlowska, M., Zabielski, R., Light and scanning electron microscopy evaluation of the postnatal small intestinal mucosa development in pigs. J. Physiol. Pharmacol. 56:Suppl. 3 (2005), 71–87.
Skrzypek, T., Piedra, J.L.V., Skrzypek, H., Kazimierczak, W., Szymanczyk, S.E., Zabielski, R., Changes in pig small intestinal absorptive area during the first 14 days of life. Livest. Sci. 133 (2010), 53–56.
Smith, M.W., Peacock, M.A., Anomalous replacement of foetal enterocytes in the neonatal pig. Proc. R. Soc. Lond. B 206 (1980), 411–420.
Snoeck, V., Huyghebaert, N., Cox, E., Vermeire, A., Saunders, J., Remon, J.P., Verschooten, F., Goddeeris, B.M., Gastrointestinal transit time of nondisintegrating radio-opaque pellets in suckling and recently weaned piglets. J. Control. Release 94 (2004), 143–153.
Starke, I.C., Pieper, R., Neumann, K., Zentek, J., Vahjen, W., Individual responses of mother sows to a probiotic Enterococcus faecium strain lead to different microbiota composition in their offspring. Benef. Microb. 4 (2013), 345–356, 10.3920/BM2013.0021.
Sty, A.C., Sangild, P.T., Skovgaard, K., Thymann, T., Bjerre, M., Chatterton, D.E., Purup, S., Boye, M., Heegaard, P.M., Spray dried, pasteurised bovine colostrum protects against gut dysfunction and inflammation in preterm pigs. J. Pediatr. Gastroenterol. Nutr. 63 (2016), 280–287.
Sun, J., Hayward, C., Shinde, R., Christenson, R., Ford, S.P., Butler, J.E., Antibody repertoire development in fetal and neonatal piglets. I. Four V-H genes account for 80 percent of V-H usage during 84 days of fetal life. J. Immunol. 161 (1998), 5070–5078.
Svendsen, J., Weström, B.R., Olsson, A.-C., Svendsen, L.S., Karlsson, B.W., Environmental and husbandry factors affecting the acquisition of passive immunity in the suckling pig. World Rev. Anim. Prod. 25 (1990), 11–19.
Takeda, T., Sakata, M., Minekawa, R., Yamamoto, T., Hayashi, M., Tasaka, K., Murata, Y., Human milk induces fetal small intestinal cell proliferation involvement of a different tyrosine kinase signaling pathway from epidermal growth factor receptor. J. Endocrinol. 181 (2004), 449–457.
Tao, N., Ochonicky, K.L., German, J.B., Donovan, S.M., Lebrilla, C.B., Structural determination and daily variations of porcine milk oligosaccharides. J. Agric. Food Chem. 58 (2010), 4653–4659.
Thompson, C.L., Wang, B., Holmes, A.J., The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2 (2008), 739–748, 10.1038/ismej.2008.29.
Thymann, T., Endocrine regulation of gut maturation in early life in pigs. Domest. Anim. Endocrinol. 56 (2016), S90–S93.
Trahair, J.F., Sangild, P.T., Fetal organ growth in response to oesophageal infusion of amniotic fluid, colostrum, milk or gastrin-releasing peptide: a study in fetal sheep. Reprod. Fertil. Dev. 12 (2000), 87–95.
Tuchscherer, M., Puppe, B., Tuchscherer, A., Tiemann, U., Early identification of neonates at risk: traits of newborn piglets with respect to survival. Theriogenology 54 (2000), 371–388.
Vahjen, W., Taras, D., Simon, O., Effect of the probiotic Enterococcus faecium NCIMB10415 on cell numbers of total Enterococcus spp: e. faecium and E. faecalis in the intestine of piglets. Curr. Issues Intestinal Microbiol. 8 (2007), 1–8.
Van Ginneken, C., Weyns, A., A stereological evaluation of secretin and gastric inhibitory peptide-containing mucosal cells of the perinatal small intestine of the pig. J. Anat. 205 (2004), 267–275.
Van Ginneken, C., Van Meir, F., Sys, S., Weyns, A., Developmental changes in heme-oxygenase-2 and bNOS expression in enteric neurons in the pig duodenum. Auton. Neurosci. 91 (2001), 16–25.
Van Ginneken, C., Van Meir, F., Sys, S., Weyns, A., Stereologic characteristics of pig small intestine during normal development. Dig. Dis. Sci. 47 (2002), 868–878.
Van Ginneken, C., The gastrointestinal system. Dayan, A., Hastings, K., McAnulty, P., Ganderup, N.-C., (eds.) The Minipig in Biomedical Research, 2012, CRC Press, 211–236.
Vanderhaeghe, C., Dewulf, J., Jourquin, J., De, K.A., Maes, D., Incidence and prevention of early parturition in sows. Reprod. Domest. Anim 46 (2011), 428–433.
Vega-Lopez, M., Telemo, E., Bailey, M., Stevens, K., Stokes, C., Immune cell distribution in the small-intestine of the pig – immunohistological evidence for an organized compartmentalization in the lamina propria. Vet. Immunol. Immunopathol. 37 (1993), 49–60.
Vega-Lopez, M., Bailey, M., Telemo, E., Stokes, C., Effect of early weaning on the development of immune cells in the pig small-intestine. Vet. Immunol. Immunopathol. 44 (1995), 319–327.
Wang, T., Huo, Y.J., Shi, F., Xu, R.J., Hutz, R.J., Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. Biol. Neonate 88 (2005), 66–72.
Wang, X., Wu, W., Lin, G., Wu, G., Wang, J., Temporal proteomic analysis reveals continuous impairment of intestinal development in neonatal piglets with intrauterine growth restriction. J. Proteome Res. 9 (2010), 924–935.
Wang, M., Radlowski, E.C., Monaco, M.H., Fahey, G.C. Jr., Gaskins, H.R., Donovan, S.M., Mode of delivery and early nutrition modulate microbial colonization and fermentation products in neonatal piglets. J. Nutr. 143 (2013), 795–803, 10.3945/jn.112.173096.795.
Wang, W., Degroote, J., Van Ginneken, C., Van Poucke, M., Vergauwen, H., Dam, T.M.T., Vanrompay, D., Peelman, L.J., De Smet, S., Michiels, J., Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox-sensitive genes. FASEB J. 30 (2016), 863–873.
Wangsness, P.J., Soroka, G.H., Effect of energy concentration of milk on voluntary intake of lean and obese piglets. J. Nutr. 108 (1978), 595–600.
Weström, B.R., Svendsen, J., Ohlsson, B.G., Tagesson, C., Karlsson, B.W., Intestinal transmission of macromolecules (BSA and FITC-labelled dextrans) in the neonatal pig. Influence of age of piglet and molecular weight of markers. Biol. Neonate 46 (1984), 20–26.
Weström, B.R., Ohlsson, B.G., Svendsen, J., Tagesson, C., Karlsson, B.W., Intestinal transmission of macromolecules (BSA and FITC-labelled dextrans) in the neonatal pig. Effect of colostrum: protease inhibitors and protein on the efficiency of transmission. Biol. Neonate 47 (1985), 359–366.
Willemen, S., Che, L., De Vos, M., Huygelen, V., Tambuyzer, B., Casteleyn, C., Van Cruchten, S., Zhang, K., Van Ginneken, C., Perinatal growth restriction is not related to higher intestinal distribution and increased serum levels of 5-hydroxytryptamin in piglets. J. Anim. Sci. 90 (2012), 305–307.
Willemen, S.A., De Vos, M., Huygelen, V., Fransen, E., Tambuyzer, B.R., Casteleyn, C., Van Cruchten, S., Van Ginneken, C., Ghrelin in the gastrointestinal tract and blood circulation of perinatal low and normal weight piglets. Animal 7 (2013), 1978–1984.
Wilson, A.D., Haverson, K., Southgate, K., Bland, P.W., Stokes, C.R., Bailey, M., Expression of major histocompatibility complex class II antigens on normal porcine intestinal endothelium. Immunology 88 (1996), 98–103.
Wilson, S., Norton, P., Haverson, K., Leigh, J., Bailey, M., Development of the palatine tonsil in conventional and germ-free piglets. Dev. Comp. Immunol. 29 (2005), 977–987.
Wilson, S., Norton, P., Leigh, J., Bailey, M., Early, microbially driven follicular reactions in the neonatal piglet do not contribute to expansion of the immunoglobulin heavy chain V-D-J repertoire. Vet. Immunol. Immunopathol. 118 (2007), 105–112.
Wiyaporn, M., Thongsong, B., Kalandakanond-Thongsong, S., Growth and small intestine histomorphology of low and normal birth weight piglets during the early suckling period. Livest. Sci. 158 (2013), 215–222.
Wolinski, J., Biernat, M., Guilloteau, P., Westrom, B.R., Zabielski, R., Exogenous leptin controls the development of the small intestine in neonatal piglets. J. Endocrinol. 177 (2003), 215–222.
Wooding, F.B.P., Smith, M.W., Craig, H., The ultrastructure of the neonatal pig colon. Am. J. Anat. 152 (1978), 269–285.
Wright, A.B., McKelvey, G.M., Wood, A.K.W., Post, E.J., Sonographic observations of the gastroduodenal junction in neonatal piglets. Ultrasound Med. Biol. 24 (1998), 1337–1344.
Xiao, L., Estellé, J., Kiilerich, P., Ramayo-Caldas, Y., Xia, Z., Feng, Q., Liang, S., Pedersen, A.Ø., Kjeldsen, N.J., Liu, C., Maguin, E., Doré, J., Pons, N., Le Chatelier, E., Prifti, E., Li, J., Jia, H., Liu, X., Xu, X., Ehrlich, S.D., Madsen, L., Kristiansen, K., Rogel-Gaillard, C., Wang, J., A reference gene catalogue of the pig gut microbiome. Nat. Microbiol., 19, 2016, 16161, 10.1038/nmicrobiol.2016.161.
Xu, R.J., Cranwell, P.D., Development of gastric acid secretion in pigs from birth to thirty six days of age: the response to pentagastrin. J. Dev. Physiol. 13 (1990), 315–326.
Xu, R.J., Tungthanathanich, P., Birtles, M.J., Mellor, D.J., Reynolds, G.W., Simpson, H.V., Growth and morphological changes in the stomach of newborn pigs during the first three days after birth. J. Dev. Physiol. 17 (1992), 7–14.
Xu, R.J., Mellor, D.J., Birtles, M.J., Reynolds, G.W., Simpson, H.V., Impact of intrauterine growth retardation on the gastrointestinal tract and the pancreas in newborn pigs. J. Pediatr. Gastroent. Nutr. 18 (1994), 231–240.
Yasuda, M., Jenne, C.N., Kennedy, L.J., Reynolds, J.D., The sheep and cattle Peyer's patch as a site of B-cell development. Vet. Res. 37 (2006), 401–415.
Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R.N., Anokhin, A.P., Heath, A.C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J.G., Lozupone, C.A., Lauber, C., Clemente, J.C., Knights, D., Knight, R., Gordon, J.I., Human gut microbiome viewed across age and geography. Nature 486 (2012), 222–227.