Abstract :
[en] We describe a robust platform for the synthesis of a large diversity of novel functional CO2
-sourced polymers by
exploiting the regio-controlled and site selective ring-opening of α- alkylidene carbonates by various nucleophiles. The remarkable reactivity of α-alkylidene carbonates is dictated by the exocyclic olefinic group that selectively orients the cyclic carbonate ring- opening with the formation of an enol species. The polyaddition of CO2
-sourced bis-α-alkylidene carbonates (bis-αCCs) with primary
and secondary diamines provides novel regioregular functional poly(urethane)s. The reactivity of bis-αCCs is also exploited for producing new poly(β-oxo-carbonate)s by organocatalyzed polyaddition with a diol. All polyadditions were feasible under ambient conditions. This synthesis platform provides new functional variants of world-class leading polymers families (polyurethanes, polycarbonates) and valorises CO2
as a chemical
feedstock.
Scopus citations®
without self-citations
85