Life cycle assessment (LCA); embodied energy; hemp wall; zero energy buildings; decision making; bio-based materials
Abstract :
[en] In Belgium, the most common approach for nearly Zero Energy Buildings is to comply with the locally modified version of the German Passive House (PH) Standard that requires a very low conductivity of exterior walls. The conventional PH brick constructions are dominated by building materials with high environmental impact including concrete blocks, firebrick and petrochemical insulation materials that produce a great amount of greenhouse gases (GHG). Moreover, there are very few studies that assessed the holistic environmental impact of conventional wall compositions against ecological wall compositions. Therefore, this research compares a traditional Belgian representative wall against a hemp block wall, according to the PH standard. The environmental impact of each wall is quantified through a life cycle assessment. The final results indicate that the hemp wall reinforced with a wood skeleton has a much lower impact on the environment: up to 60% reduction on total primary energy, 72% on climate changes, 93% on eutrophication, 61 % on ozone layer depletion and 74% on acidification. Future work may refine the assessment process. The study provides novel and significant findings that can inform building owners, architects and contractors and encourage them to choose environmentally friendly masonry wall compositions.
Research Center/Unit :
Sustainable Buildings Design Lab
Disciplines :
Architecture
Author, co-author :
Gauvreau-Lemelin, Corinne
Attia, Shady ; Université de Liège > Département ArGEnCo > Techniques de construction des bâtiments
Language :
English
Title :
Benchmarking the Environmental Impact of Green and Traditional Masonry Wall Constructions
Publication date :
03 July 2017
Event name :
Passive Low Energy Architecture
Event organizer :
Heriot Watt University, Edinburgh
Event place :
EDINBURGH, United Kingdom
Event date :
3-5 July 2017
Audience :
International
Main work title :
Passive low energy architecture design to thrive
Editor :
Brotas, Luisa
Roaf, Susan
Fergus, Nicol
Publisher :
Heriot Watt University, Edinburgh, Edinburgh, United Kingdom
Attia, S., 2016. Towards regenerative and positive impact architecture: A comparison of two net zero energy buildings, Sustainable Cities and Society, 26, 393-406, ISSN 2210-6707.
Attia, S. and Mlecnik, E., 2012. Principles for nearly zero energy building in Belgium, World Sustainable Energy Days, 29 February 2012 in Wels/Austria.
Attia, S., & De Herde, A. 2011. Defining zero energy buildings from a cradle to cradle approach. In Proceedings of PLEA (pp. 205-2010).
Boutin, M.P., Flamin, C., Quinton, S., Gosse, G., 2006. Etude des caractéristiques environnementales du chanvre par l'analyse de son cycle de vie. Ministère L'agriculture Pêche Fr. 102.
Broun, R., Menzies, G.F., 2011. Life Cycle Energy and Environmental Analysis of Partition Wall Systems in the UK. Procedia Eng., International Conference on Green Buildings and Sustainable Cities 21, 864-873.
Collet, F., Prétot, S., Lanos, C., 2011. Etude expérimentale du comportement hygrothermique d'une paroi en blocs de béton de chanvre avec ossature en bois.
CSTC, 2012. Postisolation des murs creux par remplissage de la coulisse.
Delvenne, F. 2016, Analyse du cycle de vie et coûts du cycle de vie de matériaux régénératifs: Analyse comparative dans le secteur résidentiel belge, Master thesis (in French) Liege University, Belgium
de Mahieu, J.-B., 2016. Propriétés des produits Isohemp.
EVEA, 2015. Fiche de déclaration environnementale et sanitaire du produit Isolant Biofib Trio (FDES).
Evrard, A., & De Herde, A. 2010. Hygrothermal performance of lime-hemp wall assemblies. Journal of building physics, 34(1), 5-25.
Evrard, A., Branders, A., De Herde, A., 2011. Isolation thermique par l'intérieur des murs existants en briques pleines, UCL - Architecture et Climat, Belgium
Febelcem, 2014. FEBELCEM, la Fédération de l'Industrie Cimentière Belge Evolution du marché du ciment [online]. URL http://www.febelcem.be/fr/informations-economiques/presentation-du-secteur-duciment-de-la-production-a-la-consommation-evolution-du-marche-du-ciment (accessed 01 May 2017).
Frischknecht, R., et al. 2005. The ecoinvent database: Overview and methological framework. Int. J. Life Cycle Assesment 10 3-9.
Gauvreau-Lemelin, C., 2016. Comparative Study of the Environmental Impacts of a Traditional Wall and an Hemp Wall in Belgium, Internship Report (in French), SBD Lab, Liege University, Belgium.
Guévorts, J., Roïz, J., 2014. Analyse du cycle de vie de mur en béton chaux-chanvre réalisé à partir de granulats de la société wallonne ChanvrEco. Document non publié.
INIES, 2013. Base Données Inies. URL http://www.base-inies.fr/inies/Consultation.aspx (accessed 3.31.16).
Ip, K., Miller, A., 2012. Life cycle greenhouse gas emissions of hemp-lime wall constructions in the UK. Resour. Conserv. Recycl. 69, 1-9. doi:10.1016/j.resconrec.2012.09.001
ISO, I. 2006. 14040: Environmental management-life cycle assessment-principles and framework. London: British Standards Institution.
ISO, I. 2006. 14044: environmental management-life cycle assessment-requirements and guidelines. International Organization for Standardization.
Isohemp, 2016. Catalogue produits 2016, available from: http://www.isohemp.be/, accesses 10 May 2017.
Kumar Singh, M., Attia, S., Mahapatra, S. & Teller, J. (2016) Assessment of thermal comfort in existing pre-1945 residential building stock, Energy, 98, 122-134, ISSN 0360-5442.
Passer, A., Lasvaux, S., Allacker, K., De Lathauwer, D., Spirinckx, C., Wittstock, B., & Wallbaum, H. (2015). Environmental product declarations entering the building sector: critical reflections based on 5 to 10 years experience in different European countries. The International Journal of Life Cycle Assessment, 20(9), 1199-1212.
PMP 2017, Paltforme Maison Passif, available from: http://www.maisonpassive.be/, accesses: 15 May 2017.
Pretot, S., Collet, F., Garnier, C., 2014. Life cycle assessment of a hemp concrete wall: Impact of thickness and coating. Build. Environ. 72, 223-231. doi:10.1016/j.buildenv.2013.11.010
SPW, 2012. Service Public de Wallonie,. Plan d'action NZEB, available from: http://energie.wallonie.be/servlet/Repository/120712-plan-nzeb-wallonie-vdef.pdf?ID=28471, accesses 15 May 2017.
Trachte, S., 2017. Method MMG pour la rénovation, au réemploi et à la conception réversible: Analyse du cadre réglementaire, Louvain La Neuve, Université catholique de Louvain, Belgique.
Trachte, S. (2012). Matériau, matière d'architecture soutenable: Choix responsable des matériaux de construction, pour une conception globale de l'architecture soutenable. Presses univ. de Louvain.