Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions
Negussie, Enyew; de Haas, Yvette; Dehareng, Frédéricet al.
2017 • In Journal of Dairy Science, 100 (4), p. 2433-2453
Invited review Large-scale indirect measurements for enteric methane emissions in dairy cattle A review of proxies and their potencial for use in management and breeding decisions.pdf
[en] Efforts to reduce the carbon footprint of milk production through selection and management of low-emitting cows require accurate and large-scale measurements of methane (CH4) emissions from individual cows. Several techniques have been developed to measure CH4 in a research setting but most are not suitable for large-scale recording on farm. Several groups have explored proxies (i.e., indicators or indirect traits) for CH4; ideally these should be accurate, inexpensive, and amenable to being recorded individually on a large scale. This review (1) systematically describes the biological basis of current potential CH4 proxies for dairy cattle; (2) assesses the accuracy and predictive power of single proxies and determines the added value of combining proxies; (3) provides a critical evaluation of the relative merit of the main proxies in terms of their simplicity, cost, accuracy, invasiveness, and throughput; and (4) discusses their suitability as selection traits. The proxies range from simple and low-cost measurements such as body weight and high-throughput milk mid-infrared spectroscopy (MIR) to more challenging measures such as rumen morphology, rumen metabolites, or microbiome profiling. Proxies based on rumen samples are generally poor to moderately accurate predictors of CH4, and are costly and difficult to measure routinely on-farm. Proxies related to body weight or milk yield and composition, on the other hand, are relatively simple, inexpensive, and high throughput, and are easier to implement in practice. In particular, milk MIR, along with covariates such as lactation stage, are a promising option for prediction of CH4 emission in dairy cows. No single proxy was found to accurately predict CH4, and combinations of 2 or more proxies are likely to be a better solution. Combining proxies can increase the accuracy of predictions by 15 to 35%, mainly because different proxies describe independent sources of variation in CH4 and one proxy can correct for shortcomings in the other(s). The most important applications of CH4 proxies are in dairy cattle management and breeding for lower environmental impact. When breeding for traits of lower environmental impact, single or multiple proxies can be used as indirect criteria for the breeding objective, but care should be taken to avoid unfavorable correlated responses. Finally, although combinations of proxies appear to provide the most accurate estimates of CH4, the greatest limitation today is the lack of robustness in their general applicability. Future efforts should therefore be directed toward developing combinations of proxies that are robust and applicable across diverse production systems and environments.
Disciplines :
Genetics & genetic processes Animal production & animal husbandry
Author, co-author :
Negussie, Enyew; Natural Resources Institute Finland - Luke
de Haas, Yvette; Animal Breeding and Genomics Centre of Wageningen Livestock Research
Dewhurst, Richard; Scotland's Rural College - SRUC
Dijkstra, Jan; Wageningen university - WUR
Gengler, Nicolas ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions animales et nutrition
Morgavi, Diego; Institut Scientifique de Recherche Agronomique - INRA
Soyeurt, Hélène ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Modélisation et développement
van Gastelen, Sanne; Wageningen university - WUR
Jan, Tianhai; Agri-Food and Biosciences Institute
Biscarini, Filippo; University of Teramo
Language :
English
Title :
Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions
Alternative titles :
[fr] Mesures indirectes du méthane à large échelle sur des vaches laitières: résumé des indicateurs et leur utilisation à des fins de sélection et de gestion
Publication date :
April 2017
Journal title :
Journal of Dairy Science
ISSN :
0022-0302
eISSN :
1525-3198
Publisher :
American Dairy Science Association, Champaign, United States - Illinois
Volume :
100
Issue :
4
Pages :
2433-2453
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Methagene
Funders :
COST - European Cooperation in Science and Technology
Commentary :
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Agnew, R.E., Yan, T., The impact of recent research on energy feeding systems for dairy cattle. Livest. Prod. Sci. 66 (2000), 197–215.
Agricultural Research Council, The Nutrient Requirements of Ruminant Livestock, Technical Review, 1980, CAB, Farnham Royal, UK.
Aguinaga Casañas, M.A., Rangkasenee, N., Krattenmacher, N., Thaller, G., Metges, C.C., Kuhla, B., Methyl-coenzyme M reductase A as an indicator to estimate methane production from dairy cows. J. Dairy Sci. 98 (2015), 4074–4083 25841964.
Alemu, A.W., Dijkstra, J., Bannink, A., France, J., Kebreab, E., Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production. Anim. Feed Sci. Technol. 166–167 (2011), 761–778.
Ann, S.J., Kessel, V., Russell, J.B., The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 20 (1996), 205–210.
Antunes-Fernandes, E.C., van Gastelen, S., Dijkstra, J., Hettinga, K.A., Vervoort, J., Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways. J. Dairy Sci. 99 (2016), 6251–6262 27236769.
Arndt, C., Powell, J.M., Aguerre, M.J., Crump, P.M., Wattiaux, M.A., Feed conversion efficiency in dairy cows: Repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens. J. Dairy Sci. 98 (2015), 3938–3950 25841962.
Bannink, A., Kogut, J., Dijkstra, J., France, J., Kebreab, E., van Vuuren, A.M., Tamminga, S., Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238 (2006), 36–51 16111711.
Bannink, A., van Schijndel, M.W., Dijkstra, J., A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach. Anim. Feed Sci. Technol. 166–167 (2011), 603–618.
Baskaran, R., Cullen, R., Colombo, S., Estimating values of environmental impacts of dairy farming in New Zealand, New Zealand. J. Agric. Res. 52 (2009), 377–389 10.1080/00288230909510520.
Beauchemin, K.A., Kreuzer, M., O'Mara, F., McAllister, T.A., Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 48 (2008), 21–27.
Bell, M.J., Wall, E., Russell, G., Simm, G., Stott, A.W., The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems. J. Dairy Sci. 94 (2011), 3662–3678 21700056.
Berry, D.P., Lassen, J., de Haas, Y., Residual feed intake and breeding approaches for enteric methane mitigation. Malik, P.K., Bhatta, R., Takahashi, J., Kohn, R.A., Prasad, C.S., (eds.) Livestock Production and Climate Change, 2015, CABI, Wallingford, UK, 273–291.
Biffani, S., Marusi, M., Biscarini, F., Canavesi, F., Developing a genetic evaluation for fertility using angularity and milk yield as correlated traits. Interbull Bull., 33, 2005, 63.
Blaxter, K.L., Clapperton, J.L., Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19 (1965), 511–522 5852118.
Bouchard, K., Wittenberg, K.M., Legesse, G., Krause, D.O., Khafipour, E., Buckley, K.E., Ominski, K.H., Comparison of feed intake, body weight gain, enteric methane emission and relative abundance of rumen microbes in steers fed sainfoin and lucerne silages under western Canadian conditions. Grass Forage Sci. 70 (2015), 116–129.
Brask, M., Weisbjerg, M.R., Hellwing, A.L.F., Bannink, A., Lund, P., Methane production and diurnal variation measured in dairy cows and predicted from fermentation pattern and nutrient or carbon flow. Animal 9 (2015), 1795–1806 10.1017/S1751731115001184 26245140.
Calus, M.P.L., De Haas, Y., Pszczola, M., Veerkamp, R.F., Predicted accuracy of and response to genomic selection for new traits in dairy cattle. Animal 7 (2013), 183–191 23031684.
Capper, J.L., Cady, R.A., Bauman, D.E., The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 87 (2009), 2160–2167 19286817.
Castro Montoya, J., Bhagwat, A.M., Peiren, N., De Campeneere, S., De Baets, B., Fievez, V., Relationships between odd- and branched-chain fatty acid profiles in milk and calculated enteric methane proportion for lactating dairy cattle. Anim. Feed Sci. Technol. 166 (2011), 596–602.
Chilliard, Y., Ferlay, A., Mansbridge, R.M., Doreau, M., Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech. 49 (2000), 181–205.
Chilliard, Y., Martin, C., Rouel, J., Doreau, M., Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci. 92 (2009), 5199–5211 19762838.
Chung, Y.-H., Walker, N.D., McGinn, S.M., Beauchemin, K.A., Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in non lactating dairy cows. J. Dairy Sci. 94 (2011), 2431–2439 21524535.
Coffey, M.P., Simm, G., Hill, W.G., Brotherstone, S., Genetic evaluations of dairy bulls for daughter energy balance profiles using linear type scores and body condition score analyzed using random regression. J. Dairy Sci. 86 (2003), 2205–2212 12836957.
Couvreur, S., Hurtaud, C., Marnet, P.G., Faverdin, P., Peyraud, J.L., Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet. J. Dairy Sci. 90 (2007), 392–403 17183107.
de Haas, Y., Windig, J.J., Calus, M.P.L., Dijkstra, J., de Haan, M., Bannink, A., Veerkamp, R.F., Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J. Dairy Sci. 94 (2011), 6122–6134 22118100.
De Marchi, M., Toffanin, V., Cassandro, M., Penasa, M., Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits. J. Dairy Sci. 97 (2014), 1171–1186 10.3168/jds.2013-6799 24440251.
Dehareng, F., Delfosse, C., Froidmont, E., Soyeurt, H., Martin, C., Gengler, N., Vanlierde, A., Dardenne, P., Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Animal 6 (2012), 1694–1701 23031566.
Delfosse, C., Froidmont, E., Fernandez Pierna, J.A., Martin, C., Dehareng, F., Estimation of methane emissions by dairy cows on the basis of milk composition. McGeough, E.J., McGinn, S.M., (eds.) Proc. Greenhouse Gases and Animal Agriculture (GGAA) Conference, Banff, Canada, 2010.
Demeyer, D.I., van Nevel, C.J., Methanogenesis, an integrated part of carbohydrate fermentation and its control. McDonald, I.W., Warner, A.C.I., (eds.) Digestion and Metabolism in the Ruminant, 1975, University of New England, Armidale, Australia, 366–382.
Demment, M.W., Van Soest, P.J., A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125 (1985), 641–672.
Denman, S.E., Tomkins, N.W., McSweeney, C.S., Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62 (2007), 313–322 17949432.
Dijkstra, J., Neal, H.D.S.C., Beever, D.E., France, J., Simulation of nutrient digestion, absorption and outflow in the rumen: model description. J. Nutr. 122 (1992), 2239–2256 1331382.
Dijkstra, J., van Gastelen, S., Antunes-Fernandes, E.C., Warner, D., Hatew, B., Klop, G., Podesta, S.C., van Lingen, H.J., Hettinga, K.A., Bannink, A., Relationships between milk fatty acid profiles and enteric methane production in dairy cattle fed grass- or grass silage-based diets. Anim. Prod. Sci. 56 (2016), 541–548.
Dijkstra, J., van Zijderveld, S.M., Apajalahti, J.A., Bannink, A., Gerrits, W.J.J., Newbold, J.R., Perdok, H.B., Berends, H., Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. Technol. 166–167 (2011), 590–595.
Donoghue, K.A., Herd, R.M., Bird, S.H., Arthur, P.F., Hegarty, R.F., Preliminary genetic parameters for methane production in Australian beef cattle. Proc. Assoc. Advmt. Anim. Breed. Genet., Napier, New Zealand, 2013, AAABG, Massey University, Palmerston North, New Zealand, 290–293.
Ellis, J.L., Bannink, A., France, J., Kebreab, E., Dijkstra, J., Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Glob. Change Biol. 16 (2010), 3246–3256.
Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K., France, J., Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 90 (2007), 3456–3466 17582129.
Fievez, V., Colman, E., Castro-Montoya, J.M., Stefanov, I., Vlaeminck, B., Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 172 (2012), 51–65.
Fitzsimons, C., Kenny, D.A., Deighton, M.H., Fahey, A.G., McGee, M., Methane emissions, body composition, and rumen fermentation traits of beef heifers differing in residual feed intake. J. Anim. Sci. 91 (2013), 5789–5800 24146149.
Freetly, H.C., Brown-Brandl, T.M., Enteric methane production from beef cattle that vary in feed efficiency. J. Anim. Sci. 91 (2013), 4826–4831 23965389.
Froidmont, C., Delfosse, F., Dehareng, F., Martin, C., Decruyneaere, V., Bartiaux-Thill, N., Dardenne, P., Estimation of methane emission by dairy cows according to NIRS prediction of feces composition. McGeough, E.J., McGinn, S.M., (eds.) Proc. Greenhouse Gases and Animal Agriculture (GGAA) Conference, Banff, Canada, 2010.
Garnsworthy, P.C., Craigon, J., Hernandez-Medrano, J.H., Saunders, N., Variation among individual dairy cows in methane measurements made on farm during milking. J. Dairy Sci. 95 (2012), 3181–3189 22612953.
Gengler, N., Soyeurt, H., Dehareng, F., Bastin, C., Colinet, F., Hammami, H., Vanrobays, M.-L., Lainé, A., Vanderick, S., Grelet, C., Vanlierde, A., Froidmont, E., Dardenne, P., Capitalizing on fine milk composition for breeding and management of dairy cows. J. Dairy Sci. 99 (2016), 4071–4079 26778306.
Gerber, P.J., Steinfeld, H., Worldwide growth of animal production and environmental consequences. Schlegel, P.S., Durosoy, P.S., Jongbloed, A.W., (eds.) Trace Elements in Animal Production Systems, 2008, Wageningen Academic Publishers, Wageningen, the Netherlands, 21–32.
Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G., Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities, 2013, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Gill, F.L., Dewhurst, R.J., Dungait, J.A.J., Evershed, R.P., Ives, L., Li, C.S., Pancost, R.D., Sullivan, M., Bera, S., Bull, I.D., Archaeol—A biomarker for foregut fermentation in modern and ancient herbivorous mammals?. Org. Geochem. 41 (2010), 467–472.
Goopy, J.P., Donaldson, A., Hegarty, R., Vercoe, P.E., Haynes, F., Barnett, M., Oddy, V.H., Low-methane yield sheep have smaller rumens and shorter rumen retention time. Br. J. Nutr. 111 (2014), 578–585 24103253.
Grainger, C., Beauchemin, K.A., Can enteric methane emissions from ruminants be lowered without lowering their production?. Anim. Feed Sci. Technol. 166–167 (2011), 308–320.
Guyader, J., Eugène, M., Nozière, P., Morgavi, D.P., Doreau, M., Martin, C., Influence of rumen protozoa on methane emission in ruminants: A meta-analysis approach. Animal 8 (2014), 1816–1825 25075950.
Haisan, J., Sun, Y., Guan, L.L., Beauchemin, K.A., Iwaasa, A., Duval, S., Barreda, D.R., Oba, M., The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J. Dairy Sci. 97 (2014), 3110–3119 24630651.
Hammond, K.J., Burke, J.L., Koolaard, J.P., Muetzel, S., Pinares-Patiño, C.S., Waghorn, G.C., Effects of feed intake on enteric methane emissions from sheep fed fresh white clover (Trifolium repens) and perennial ryegrass (Lolium perenne) forages. Anim. Feed Sci. Technol. 197 (2013), 121–132.
Hammond, K.J., Crompton, L.A., Bannink, A., Dijkstra, J., Yáñez-Ruiz, D.R., O'Kiely, P., Kebreab, E., Eugène, M.A., Yu, Z., Shingfield, K.J., Schwarm, A., Hristov, A.N., Reynolds, C.K., Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed Sci. Technol. 219 (2016), 13–30.
Harb, M.Y., Campling, R.C., Variation among pregnant, non-lactating dairy cows in eating and ruminating behaviour, digestibility and voluntary intake of hay. Grass Forage Sci. 40 (1985), 109–111.
Hayes, B.J., Lewin, H.A., Goddard, M.E., The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 29 (2013), 206–214 23261029.
Hegarty, R.S., Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Agric. Res. 50 (1999), 1321–1327.
Hegarty, R.S., Goopy, J.P., Herd, R.M., McCorkell, B., Cattle selected for lower residual feed intake have reduced daily methane production. J. Anim. Sci. 85 (2007), 1479–1486 17296777.
Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Global Rumen Census Collaborators, Janssen, P.H., Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep., 5, 2015, 14567 10.1038/srep14567 26449758.
Herd, R.M., Arthur, P.F., Bird, S.H., Donoghue, K.A., Hegarty, R.S., Genetic variation for methane traits in beef cattle. Proc. 10th World Conference on Genetics Applied to Livestock Production (WCGALP), Vancouver, Canada, 2014, Am. Soc. Anim. Sci., Champaign, IL.
Herd, R.M., Bird, S.H., Donoghue, K.A., Arthur, P.F., Hegarty, R.S., Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits. Proc. Assoc. Advmt. Anim. Breed. Genet., Napier, New Zealand, 2013, AAABG, Massey University, Palmerston North, New Zealand, 286–289.
Holter, J.B., Young, A.J., Methane production in dry and lactating Holstein cows. J. Dairy Sci. 75 (1992), 2165–2175 1401368.
Hristov, A.N., Johnson, K.A., Kebreab, E., Livestock methane emissions in the United States. Proc. Natl. Acad. Sci. USA, 111, 2014, E1320 10.1073/pnas.1401046111 24619093.
Hristov, A.N., Oh, J., Firkins, J.L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H.P.S., Adesogan, A.T., Yang, W., Lee, C., Gerber, P.J., Henderson, B., Tricarico, J.M., Special topics - Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91 (2013), 5045–5069 24045497.
Hristov, A.N., Ott, T., Tricarico, J., Rotz, A., Waghorn, G., Adesogan, A., Dijkstra, J., Montes, F., Oh, J., Kebreab, E., Oosting, S.J., Gerber, P.J., Henderson, B., Makkar, H.P.S., Firkins, J.L., Special topics - Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J. Anim. Sci. 91 (2013), 5095–5113 24045470.
IPCC, IPCC Guidelines for National Greenhouse Gas Inventories. Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., (eds.) Prepared by the National Greenhouse Gas Inventories Program, 2006, IGES, Hayama, Japan.
Iwamoto, M., Asanuma, N., Hino, T., Ability of Selenomonas ruminantium, Veillonella parvula, and Wolinella succinogenes to reduce nitrate and nitrite with special reference to the suppression of ruminal methanogenesis. Anaerobe 8 (2002), 209–215.
Jonker, A., Molano, G., Antwi, C., Waghorn, G., Feeding lucerne silage to beef cattle at three allowances and four feeding frequencies affects circadian patterns of methane emissions, but not emissions per unit of intake. Anim. Prod. Sci. 54 (2014), 1350–1353.
Kandel, P.B., Vanderick, S., Vanrobays, M.-L., Vanlierde, A., Dehareng, F., Froidmont, E., Soyeurt, H., Gengler, N., Consequences of selection for environmental impact traits in dairy cows. Proc. 10th World Congress on Genetics Applied to Livestock Production (WCGALP), Vancouver, Canada, 2014, Am. Soc. Anim. Sci., Champaign, IL.
Kirchgessner, M., Windisch, W., Muller, H.L., Nutritional factors for the quantification of methane production. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. Von Engelhardt, W., Leonhard-Marek, S., Breves, G., Giesecke, D., (eds.) Proc. 8th Int. Symp. Ruminant Physiology, 1995, Ferdinand Enke Verlag, Stuttgart, Germany, 333–348.
Kittelmann, S., Pinares-Patiño, C.S., Seedorf, H., Kirk, M.R., Ganesh, S., McEwan, J.C., Janssen, P.H., Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS One, 9, 2014, e103171 25078564.
Knapp, J.R., Laur, G.L., Vadas, P.A., Weiss, W.P., Tricarico, J.M., Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97 (2014), 3231–3261 24746124.
Knight, T., Ronimus, R.S., Dey, D., Tootill, C., Naylor, G., Evans, P., Molano, G., Smith, A., Tavendale, M., Pinares-Patiño, C.S., Clark, H., Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Anim. Feed Sci. Technol. 166–167 (2011), 101–112.
Kubo, I., Muroi, H., Himejima, M., Yamagiwa, Y., Mera, H., Tokushima, K., Ohta, S., Kamikawa, T., Structure-antibacterial activity relationships of anacardic acids. J. Agric. Food Chem. 41 (1993), 1016–1019.
Kuzuhara, Y., Kawamura, K., Yoshitoshi, R., Tamaki, T., Sugai, S., Ikegami, M., Kurokawa, Y., Obitsu, T., Okita, M., Sugino, T., Yasuda, T., A preliminarily study for predicting body weight and milk properties in lactating Holstein cows using a three-dimensional camera system. Comput. Electron. Agric. 111 (2015), 186–193.
Lassen, J., Løvendahl, P., Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. J. Dairy Sci. 99 (2016), 1959–1967 26805978.
Lassey, K.R., Livestock methane emission: From the individual grazing animal through national inventories to the global methane cycle. Agric. Meteorol. 142 (2007), 120–132.
Martin, C., Morgavi, D.P., Doreau, M., Methane mitigation in ruminants: From microbe to the farm scale. Animal 4 (2010), 351–365 22443940.
Martin-Collado, D., Byrne, T., Amer, P., Santos, B., Axford, M., Pryce, J., Analyzing the heterogeneity of farmers’ preferences for improvements in dairy cow traits using farmer typologies. J. Dairy Sci. 98 (2015), 4148–4161 25864048.
McCartney, C.A., Bull, I.D., Dewhurst, R.J., Using archaeol to investigate the location of methanogens in the ruminant digestive tract. Livest. Sci. 164 (2014), 39–45.
McCartney, C.A., Bull, I.D., Waters, S.M., Dewhurst, R.J., Technical note: Comparison of biomarker and molecular biological methods for estimating methanogen abundance. J. Anim. Sci. 91 (2013), 5724–5728 24146154.
McCartney, C.A., Bull, I.D., Yan, T., Dewhurst, R.J., Assessment of archaeol as a molecular proxy for methane production in cattle. J. Dairy Sci. 96 (2013), 1211–1217 23261373.
McCartney, C.A., Dewhurst, R.J., Bull, I.D., Changes in the ratio of tetraether to diether lipids in cattle feces in response to altered dietary ratio of grass silage and concentrates. J. Anim. Sci. 92 (2014), 4095–4098 25085398.
McDonnell, R.P., Hart, K.J., Boland, T.M., Kelly, A.K., McGee, M., Kenny, D.A., Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets. J. Anim. Sci. 94 (2016), 1179–1193 27065279.
Methagene, METHAGENE EU COST Action FA1302 on large-scale methane measurements on individual ruminants for genetic evaluations. http://www.methagene.eu/, 2013 Accessed Nov. 17, 2016.
Meuwissen, T., Hayes, B., Goddard, M., Accelerating improvement of livestock with genomic selection. Annu. Rev. Anim. Biosci. 1 (2013), 221–237 25387018.
Miglior, F., Sewalem, A., Jamrozik, J., Bohmanova, J., Lefebvre, D.M., Moore, R.K., Genetic analysis of milk urea nitrogen and lactose and their relationships with other production traits in Canadian Holstein cattle. J. Dairy Sci. 90 (2007), 2468–2479 17430951.
Mills, J.A.N., Kebreab, E., Yates, C.M., Crompton, L.A., Cammell, S.B., Dhanoa, M.S., Agnew, R.E., France, J., Alternative approaches to predicting methane emissions from dairy cows. J. Anim. Sci. 81 (2003), 3141–3150 14677870.
Mohammed, R., McGinn, S.M., Beauchemin, K.A., Prediction of enteric methane output from milk fatty acid concentrations and rumen fermentation parameters in dairy cows fed sunflower, flax, or canola seeds. J. Dairy Sci. 94 (2011), 6057–6068 22118093.
Moorby, J.M., Fleming, H.R., Theobald, V.J., Fraser, M.D., Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep?. Sci. Rep., 5, 2015, 17915 26647754.
Moraes, L.E., Strathe, A.B., Fadel, J.G., Casper, D.P., Kebreab, E., Prediction of enteric methane emissions from cattle. Glob. Chang. Biol. 20 (2014), 2140–2148 24259373.
Morgavi, D.P., Forano, E., Martin, C., Newbold, C.J., Microbial ecosystem and methanogenesis in ruminants. Animal 4 (2010), 1024–1036 22444607.
Morgavi, D.P., Martin, C., Jouany, J.P., Ranilla, M.J., Rumen protozoa and methanogenesis: not a simple cause-effect relationship. Br. J. Nutr. 107 (2012), 388–397 10.1017/S0007114511002935 21762544.
Moss, A.R., Jouany, J.P., Newbold, J., Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 49 (2000), 231–253.
Muñoz, C., Yan, T., Wills, D.A., Murray, S., Gordon, A.W., Comparison of the sulfur hexafluoride tracer and respiration chamber techniques for estimating methane emissions and correction for rectum methane output from dairy cows. J. Dairy Sci. 95 (2012), 3139–3148 22612950.
Murray, R.M., Bryant, A.M., Leng, R.A., Rates of production of methane in the rumen and large intestine of sheep. Br. J. Nutr. 36 (1976), 1–14 949464.
Negussie, E., Lehtinen, J., Mäntysaari, P., Liinamo, A.-E., Mäntysaari, E., Lidauer, M., Non-invasive individual methane measurements in dairy cows using photoacoustic infrared spectroscopy technique. 6th Greenhouse Gases Animal Agriculture Conference (GGAA2016), Melbourne, Australia, 2016, 62.
Negussie, E., Mäntysaari, P., Mäntysaari, E.A., Lidauer, M., Animal wise variation in enteric methane output traits and its relationships with feed efficiency in dairy cattle: A longitudinal model analysis. Proc. 10th World Congress of Genetics Applied to Livestock Production, Vancouver, Canada, 2014, Am. Soc. Anim. Sci., Champaign, IL.
Newbold, C.J., de la Fuente, G., Belanche, A., Ramos-Morales, E., McEwan, N., The role of ciliate protozoa in the rumen. Front. Microbiol., 6, 2015, 1313 10.3389/fmicb.2015.01313 26635774.
Nielsen, H.M., Amer, P.R., An approach to derive economic weights in breeding objectives using partial profile choice experiments. Animal 1 (2007), 1254–1262 22444881.
Nkrumah, J.D., Okine, E.K., Mathison, G.W., Schmid, K., Li, C., Basarab, J.A., Price, M.A., Wang, Z., Moore, S.S., Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 84 (2006), 145–153 16361501.
Okine, E.K., Mathison, G.W., Hardin, R.T., Effects of changes in frequency of reticular contractions on fluid and particulate passage rates in cattle. J. Anim. Sci. 67 (1989), 3388–3396 2613584.
Olkin, I., Range restrictions for product-moment correlation matrices. Psychometrika 46 (1981), 469–472.
Ørskov, E.R., Ryle, M., Energy Nutrition in Ruminants, 1990, Elsevier Applied Science Publisher, London, UK.
Pickering, N.K., Oddy, V.H., Basarab, J.A., Cammack, K., Hayes, B.J., Hegarty, R.S., McEwan, J.C., Miller, S., Pinares, C., de Haas, Y., Invited review: Genetic possibilities to reduce enteric methane emissions from ruminants. Animal 9 (2015), 1431–1440 26055577.
Pinares-Patiño, C.S., Hickey, S.M., Young, E.A., Dodds, K.G., MacLean, S., Molano, G., Sandoval, E., Kjestrup, H., Harland, R., Pickering, N.K., McEwan, J.C., Heritability estimates of methane emissions from sheep. Animal 7 (2013), 316–321 23739473.
Pinares-Patiño, C.S., Ulyatt, M.J., Lassey, K.R., Barry, T.N., Holmes, C.W., Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed lucerne hay. J. Agric. Sci. 140 (2003), 205–214.
Popova, M., Martin, C., Eugène, M., Mialon, M.M., Doreau, M., Morgavi, D.P., Effect of fibre- and starch-rich finishing diets on methanogenic Archaea diversity and activity in the rumen of feedlot bulls. Anim. Feed Sci. Technol. 166–167 (2011), 113–121.
Poulsen, M., Clarissa, S., Bent Borg, J., Ricarda, M.E., Anja, S., Nuria, C., Ole, H., Gabriel, M., Lena, F., Christa, S., Wolfram, W., Peter, L., Andreas, S., Tim, U., Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun., 4, 2013, 1428 23385573.
Ramin, M., Huhtanen, P., Development of equations for predicting methane emissions from ruminants. J. Dairy Sci. 96 (2013), 2476–2493 23403199.
Rico, D.E., Chouinard, P.Y., Hassanat, F., Benchaar, C., Gervais, R., Prediction of enteric methane emissions from Holstein dairy cows fed various forage sources. Animal 10 (2016), 203–211 10.1017/S1751731115001949 26399308.
Roehe, R., Dewhurst, R.J., Duthie, C.-A., Rooke, J.A., McKain, N., Ross, D.W., Hyslop, J.J., Waterhouse, A., Freeman, T.C., Watson, M., Wallace, R.J., Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genet., 12, 2016, e1005846 10.1371/journal.pgen.1005846 26891056.
Romero-Perez, A., Okine, E.K., McGinn, S.M., Guan, L.L., Oba, M., Duval, S.M., Kindermann, M., Beauchemin, K.A., The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. J. Anim. Sci. 92 (2014), 4682–4693 25184838.
Romero-Perez, A., Okine, E.K., McGinn, S.M., Guan, L.L., Oba, M., Duval, S.M., Kindermann, M., Beauchemin, K.A., Sustained reduction in methane production from long-term addition of 3-nitrooxypropanol to a beef cattle diet. J. Anim. Sci. 93 (2015), 1780–1791 26020199.
Ross, E.M., Moate, P.J., Marett, L.C., Cocks, B.G., Hayes, B.J., Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing. J. Dairy Sci. 96 (2013), 6030–6046 23871375.
Ross, E.M., Moate, P.J., Marett, L.C., Cocks, B.G., Hayes, B.J., Metagenomic predictions: From microbiome to complex health and environmental phenotypes in humans and cattle. PLoS One, 2013 10.1371/journal.pone.0073056 24023808.
Rutten, C.J., Velthuis, A.G., Steeneveld, W., Hogeveen, H., Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 96 (2013), 1928–1952 23462176.
Schirmann, K., Chapinal, N., Weary, D.M., Heuwieser, W., von Keyserlingk, M.A.G., Rumination and its relationship to feeding and lying behavior in Holstein dairy cows. J. Dairy Sci. 95 (2012), 3212–3217 22612956.
Schwarm, A., Schweigel-Röntgen, M., Kreuzer, M., Ortmann, S., Gill, F., Kuhla, B., Meyer, U., Lohölter, M., Derno, M., Methane emission, digestive characteristics and faecal archaeol in heifers fed diets based on silage from brown midrib maize as compared to conventional maize. Arch. Anim. Nutr. 69 (2015), 159–176 25963930.
Shi, W., Moon, C.D., Leahy, S.C., Kang, D., Froula, J., Kittelmann, S., Fan, C., Deutsch, S., Gagic, D., Seedorf, H., Kelly, W.J., Atua, R., Sang, C., Soni, P., Li, D., Pinares-Patiño, C.S., McEwan, J.C., Janssen, P.H., Chen, F., Visel, A., Wang, Z., Attwood, G.T., Rubin, E.M., Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res, 2014 10.1101/gr.168245.113 24907284.
Shinkai, T., Enishi, O., Mitsumori, M., Higuchi, K., Kobayashi, Y., Takenaka, A., Nagashima, K., Mochizuki, M., Mitigation of methane production from cattle by feeding cashew nut shell liquid. J. Dairy Sci. 95 (2012), 5308–5316 22916936.
Simm, G., Genetic Improvement of Cattle and Sheep, 1998, Farming Press Books and Videos, Ipswich, UK.
Soyeurt, H., Dehareng, F., Gengler, N., McParland, S., Wall, E., Berry, D.P., Coffey, M., Dardenne, P., Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems and countries. J. Dairy Sci. 94 (2011), 1657–1667 21426953.
Stergiadis, S., Zou, C.X., Chen, X.J., Allen, M., Wills, D., Yan, T., Equations to predict methane emissions from cows fed at maintenance energy level in pasture-based systems. Agric. Ecosyst. Environ. 220 (2016), 8–20.
Sun, X., Henderson, G., Cox, F., Molano, G., Harrison, S.J., Luo, D., Janssen, P.H., Pacheco, D., Lambs fed fresh winter forage rape (Brassica napus L.) emit less methane than those fed perennial ryegrass (Lolium perenne L.), and possible mechanisms behind the difference. PLoS One, 10, 2015, e0119697 10.1371/journal.pone.0119697 25803688.
TensorFlow, TensorFlow is an Open Source Software Library for Machine Intelligence. https://www.tensorflow.org/, 2016 Accessed Nov. 17, 2016.
van Gastelen, S., Antunes-Fernandes, E.C., Hettinga, K.A., Klop, G., Alferink, S.J.J., Hendriks, W.H., Dijkstra, J., Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn-silage based diets. J. Dairy Sci. 98 (2015), 1915–1927 25582590.
van Gastelen, S., Dijkstra, J., Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy. J. Sci. Food Agric. 96 (2016), 3963–3968 26996655.
van Lingen, H.J., Crompton, L.A., Hendriks, W.H., Reynolds, C.K., Dijkstra, J., Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. J. Dairy Sci. 97 (2014), 7115–7132 25218750.
van Middelaar, C.E., Berentsen, P.B.M., Dijkstra, J., De Boer, I.J.M., Evaluation of a feeding strategy to reduce greenhouse emissions from dairy farming: The level of analysis matters. Agric. Syst. 121 (2013), 9–22.
van Middelaar, C.E., Berentsen, P.B.M., Dijkstra, J., Van Arendonk, J.A.M., De Boer, I.J.M., Methods to determine the relative value of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain. J. Dairy Sci. 97 (2014), 5191–5205 24881792.
van Middelaar, C.E., Dijkstra, J., Berentsen, P.B.M., De Boer, I.J.M., Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming. J. Dairy Sci. 97 (2014), 2427–2439 24485690.
van Zijderveld, S.M., Gerrits, W.J.J., Apajalahti, J.A., Newbold, J.R., Dijkstra, J., Leng, R.A., Perdok, H.B., Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93 (2010), 5856–5866 21094759.
Vanlierde, A., Dehareng, F., Froidmont, E., Dardenne, P., Kandel, P.B., Gengler, N., Deighton, M.H., Buckley, F., Lewis, E., McParland, S., Berry, D.P., Soyeurt, H., Prediction of the individual enteric methane emission of dairy cows from milk-mid-infrared spectra. Advances in Animal Biosciences. Proc. 5th Greenhouse Gases Animal Agriculture Conference (GGAA2013), Dublin, Ireland, 2013, Cambridge Journals, Cambridge, UK, 433.
Vanlierde, A., Vanrobays, M.L., Dehareng, F., Froidmont, E., Soyeurt, H., McParland, S., Lewis, E., Deighton, M.H., Grandl, F., Kreuzer, M., Grendler, B., Dardenne, P., Gengler, N., Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. J. Dairy Sci. 98 (2015), 5740–5747 26026761.
Vanlierde, A., Vanrobays, M.-L., Gengler, N., Dardenne, P., Froidmont, E., Soyeurt, H., McParland, S., Lewis, E., Deighton, M.H., Mathot, M., Dehareng, F., Milk mid-infrared spectra enable prediction of lactation-stage-dependent methane emissions of dairy cattle within routine population-scale milk recording schemes. Anim. Prod. Sci. 56 (2016), 258–264.
Vanrobays, M.-L., Bastin, C., Vandenplas, J., Hammami, H., Soyeurt, H., Vanlierde, A., Dehareng, F., Froidmont, E., Gengler, N., Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra. J. Dairy Sci. 99 (2016), 7247–7260 10.3168/jds.2015-10646 27372592.
Veneman, J.B., Muetzel, S., Hart, K.J., Faulkner, C.L., Moorby, J.M., Perdok, H.B., Newbold, C.J., Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows?. PLoS One, 10, 2015, e0140282 10.1371/journal.pone.0140282 26509835.
Vlaeminck, B., Fievez, V., Cabrita, A.R.J., Fonseca, A.J.M., Dewhurst, R.J., Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 131 (2006), 389–417.
Wall, E., Simm, G., Moran, D., Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal 4 (2010), 366–376 22443941.
Wallace, R.J., Rooke, J., McKain, N., Duthie, C.-A., Hyslop, J., Ross, D., Waterhouse, A., Watson, M., Roehe, R., The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics, 16, 2015, 839 26494241.
Wallace, R.J., Rooke, J.A., Duthie, C.-A., Hyslop, J.J., Ross, D.W., McKain, N., de Souza, S.M., Snelling, T.J., Waterhouse, A., Roehe, R., Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Sci. Rep., 4, 2014, 5892 25081098.
Wang, C., Liu, Q., Zhang, Y.L., Pei, C.X., Zhang, S.L., Wang, Y.X., Yang, W.Z., Bai, Y.S., Shi, Z.G., Liu, X.N., Effects of isobutyrate supplementation on ruminal microflora, rumen enzyme activities and methane emissions in Simmental steers. J. Anim. Physiol. Anim. Nutr. (Berl.) 99 (2015), 123–131 24702602.
Warner, D., Hatew, B., Podesta, S.C., Klop, G., van Gastelen, S., van Laar, H., Dijkstra, J., Bannink, A., Effects of nitrogen fertilisation rate and maturity of grass silage on methane emission by lactating dairy cows. Animal 10 (2016), 34–43 26264354.
Watt, L.J., Clark, C.E.F., Krebs, G.L., Petzel, C.E., Nielsen, S., Utsumi, S.A., Differential rumination, intake, and enteric methane production of dairy cows in a pasture-based automatic milking system. J. Dairy Sci. 98 (2015), 7248–7263 26254528.
Williams, S.R.O., Williams, B., Moate, P.J., Deighton, M.H., Hannah, M.C., Wales, W.J., Methane emissions of dairy cows cannot be predicted by the concentrations of C8:0 and total C18 fatty acids in milk. Anim. Prod. Sci. 54 (2014), 1757–1761 10.1071/AN14292.
Wirsenius, S., Berndes, G., Azar, C., How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030?. Agric. Syst. 103 (2010), 621–636 10.1016/j.agsy.2010.07.005.
Wuchter, C., Schouten, S., Coolen, M.J.L., Damste, J.S.S., Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry. Paleoceanography, 19, 2004, PA4028.
Yan, T., Comparison of enteric methane emissions of lactating dairy cows between Holstein-Friesian and Norwegian breeds. Proc. 6th Greenhouse Gases and Animal Agriculture, Melbourne, Australia, 2016, 129.
Yan, T., Agnew, R.E., Gordon, F.J., Porter, M.G., The prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest. Prod. Sci. 64 (2000), 253–263.
Yan, T., Mayne, C.S., Gordon, F.G., Porter, M.G., Agnew, R.E., Patterson, D.C., Ferris, C.P., Kilpatrick, D.J., Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J. Dairy Sci. 93 (2010), 2630–2638 10.3168/jds.2009-2929 20494172.
Yan, T., Mayne, C.S., Patterson, D.C., Agnew, R.E., Prediction of body weight and empty body composition using body size measurements in lactating dairy cows. Livest. Sci. 124 (2009), 233–241.
Yan, T., Patterson, D.C., Mayne, C.S., Agnew, R.E., Porter, M.G., Prediction of empty body weight and composition from live weight and other live animal measurements in lactating dairy cows. J. Agric. Sci. 147 (2009), 241–251.
Yan, T., Porter, M.G., Mayne, S.C., Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal 3 (2009), 1455–1462 22444941.
Zhao, Y.G., O'Connell, N.E., Yan, T., Prediction of enteric methane emissions from sheep offered fresh perennial ryegrass (Lolium perenne) using data measured in indirect open-circuit respiration chambers. J. Anim. Sci. 94 (2016), 2425–2435 10.2527/jas.2016-0334 27285918.