[en] [1] Primary production and calcification in response to different partial pressures of CO2 (PCO2) ("glacial,'' "present,'' and "year 2100'' atmospheric CO2 concentrations) were investigated during a mesocosm bloom dominated by the coccolithophorid Emiliania huxleyi. The day-to-day dynamics of net community production (NCP) and net community calcification (NCC) were assessed during the bloom development and decline by monitoring dissolved inorganic carbon (DIC) and total alkalinity ( TA), together with oxygen production and 14 C incorporation. When comparing year 2100 with glacial PCO2 conditions we observed: ( 1) no conspicuous change of net community productivity (NCPy); ( 2) a delay in the onset of calcification by 24 to 48 hours, reducing the duration of the calcifying phase in the course of the bloom; ( 3) a 40% decrease of NCC; and ( 4) enhanced loss of organic carbon from the water column. These results suggest a shift in the ratio of organic carbon to calcium carbonate production and vertical flux with rising atmospheric PCO2.
UiB - University of Bergen DG RDT - Commission Européenne. Direction Générale de la Recherche et de l'Innovation BELSPO - Politique scientifique fédérale FRFC - Fonds de la Recherche Fondamentale Collective
Commentary :
An edited version of this paper was published by AGU. Copyright (2005) American Geophysical Union. Delille, B., et al. (2005), Response of primary production and calcification to changes of pCO2 during experimental blooms
of the coccolithophorid Emiliania huxleyi, Global Biogeochem. Cycles, 19, GB2023, doi:10.1029/2004GB002318.
Anderson, L. G., C. Haraldson, and R. Lindegren (1992), Gran linearization of potentiometric Winkler titration, Mar. Chem., 37, 179-190.
Anning, T., N. Nimer, M. J. Merrett, and C. Brownlee (1996), Costs and benefits of calcification in coccolithophorids, J. Mar. Syst., 9, 45-56.
Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham (2001), A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep Sea Res,, Part II, 49, 219-236.
Berry, L., A. R. Taylor, U. Lucken, K. P. Ryan, and C. Brownlee (2002), Calcification and inorganic carbon acquisition in coccolithophores, Funct. Plant. Biol., 29, 289-299.
Bijma, J., H. J. Spero, and D. W. Lea (1999), Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results), in Use of Proxies in Paleoceanography: Examples From the South Atlantic, edited by G. Fischer and G. Wefer, pp. 489-512, Springer, New York.
Bratbak, G., W. Wilson, and M. Heldal (1996), Viral control of Emiliania huxleyi blooms?, J. Mar Syst., 9, 75-81.
Buitenhuis, E. T., J. Van Bleijswijk, D. Bakker, and M. Veldhuis (1996), Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea, Mar. Ecol. Prog. Ser., 143, 271-282.
Buitenhuis, E. T., H. J. W. De Baar, and M. J. W. Veldhuis (1999), Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species, J. Phycol., 35, 949-959.
Buitenhuis, E. T., P. Van der Wal, and H. J. W. De Baar (2001), Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: A field and mesocosm study derived simulation, Global Biogeochem. Cycles, 15(3), 577-587.
Castberg, T., A. Larsen, R. A. Sandaa, C. P. D. Brussaard, J. K. Egge, M. Heldal, R. Thyrhaug, E. J. van Hannen, and G. Bratbak (2001), Microbial population dynamics and diversity during a bloom of the marine coccolithophorid Emiliania huxleyi (Haptophyta), Mar. Ecol. Prog. Ser., 221, 39-46.
Chen, C. Y., and E. G. Durbin (1994), Effects of pH on the growth and carbon uptake of marine phytoplankton, Mar. Ecol. Prog. Ser., 109, 83-94.
Dickson, A. G. (1990), Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K, Deep Sea Res., Part A, 37, 755-766.
Dong, L. F., N. A. Nimer, E. Okus, and M. J. Merrett (1993), Dissolved inorganic carbon utilization in relation to calcite production in Emiliania huxleyi (Lohmann) Kamptner, New Phytol., 123, 679-684.
Engel, A. (2002), Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton, J. Plankton Res., 24, 49-53.
Engel, A., et al. (2004a), Testing the direct effect of CO2 concentration on marine phytoplankton: A mesocosm experiment with the coccolithophorid Emiliania huxleyi, Limnol. Oceanogr., 50, 493-507.
Engel, A., U. Thoms, U. Riebesell, E. Rochelle-Newall, and I. Zondervan (2004b), Polysaccharide aggregation as a potential sink of marine dissolved organic carbon, Nature, 428, 929-932.
Frankignoulle, M. (1994), A complete set of buffer factors for acid/base CO2 system in seawater, J. Mar. Syst., 5, 111-118.
Frankignoulle, M., C. Canon, and J.-P. Gattuso (1994), Marine calcification as a source of carbon dioxide: Positive feedback to increasing atmospheric CO2, Limnol. Oceanogr., 39, 458-462.
Frankignoulle, M., M. Pichon, and J.-P. Gattuso (1995), Aquatic calcification as a source of carbon dioxide, in Carbon Sequestration in the Biosphere, edited by M. Beran, pp. 265-271, Springer, New York.
Frankignoulle, M., A. V. Borges, and R. Biondo (2001), A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments, Water Res., 35, 1344-1347.
Gao, K., Y. Aruga, K. Asada, and M. Kiyohara (1993), Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp and G-chilensis, J. Appl. Phycol., 5, 563-571.
Gattuso, J.-P., M. Frankignoulle, I. Bourge, S. Romaine, and R. W. Buddemeier (1998), Effect of calcium carbonate saturation of seawater on coral calcification, Global Planet. Change, 18, 37-46.
Gattuso, J.-P., D. Allemand, and M. Frankignoulle (1999), Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry, Am. Zool., 39, 160-183.
Gran, G. (1952), Determination of the equivalence point in potentiometric titration, part II, Analyst, 77, 661-671.
Hedges, J. I., J. A. Baldock, Y. Gélinas, C. Lee, M. L. Peterson, and S. G. Wakeham (2002), The biochemical and elemental compositions of marine plankton: A NMR perspective, Mar. Chem., 78, 47-63.
Herfort, L., B. Thake, and J. Roberts (2002), Acquisition and use of bicarbonate by Emiliania huxleyi, New Phytol., 156, 427-436.
Herfort, L., E. Loste, F. Meldrum, and B. Thake (2004), Structural and physiological effects of calcium and magnesium in Emiliania huxleyi (Lohmann) Hay and Mohler, J. Struct. Biol., 148, 307-314.
Hiwatari, T., A. Yuzawa, M. Okazaki, M. Yamamoto, T. Akano, and M. Kiyohara (1995), Effects of CO2 concentrations on growth in the coccolithophorids (haptophyta), Energy Convers. Manage., 36, 779-782.
Hoover, T. E., and D. C. Berkshire (1969), Effects of hydration in carbon dioxide exchange across an air-water interface, J. Geophys. Res., 74, 456-464.
Jacquet, S., M. Heldal, D. Iglesias-Rodriguez, A. Larsen, W. Wilson, and G. Bratbak (2002), Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection, Aquat. Microb. Ecol., 27, 111-124.
Jähne, B., G. Heinz, and W. Dietrich (1987), Measurement of the diffusion coefficients of sparingly soluble gases in water, J. Geophys. Res., 92, 10,767-10,776.
Klaas, C., and D. E. Archer (2002), Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio, Global Biogeochem. Cycles, 16(4), 1116, doi: 10.1029/2001GB001765.
Knap, A. H., A. Michaels, H. Close, H. W. Ducklow, and A. G. Dickson (Eds.) (1994), Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements, JGOFS Rep. 19, 170 pp., Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
Langdon, C., T. Takahashi, C. Sweeney, D. Chipman, J. Goddard, F. Marubim, H. Aceves, H. Barnett, and M. J. Atkinson (2000), Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef, Global Biogeochem. Cycles, 14(2), 639-654.
Langdon, C., W. S. Broecker, D. E. Hammond, E. Glenn, K. Fitzsimmons, S. G. Nelson, T. H. Peng, I. Hajdas, and G. Bonani (2003), Effect of elevated CO2 on the community metabolism of an experimental coral reef, Global Biogeochem. Cycles, 17(1), 1011, doi:10.1029/ 2002GB001941.
Leclercq, N., J.-P. Gattuso, and J. Jaubert (2002), Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure, Limnol. Oceanogr., 47, 558-564.
Lewis, E., and D. W. R. Wallace (1998), Program Developed for CO2 System Calculations, Rep. ORNL/CDIAC-105, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Nad. Lab., Oak Ridge, Tenn.
Marie, D., C. P. D. Brussaard, R. Thyrhaug, G. Bratbak, and D. Vaulot (1999), Enumeration of marine viruses in culture and natural samples by flow cytometry, Appl. Environ. Microbiol., 65, 45-52.
Milliman, J. D., P. J. Troy, W. M. Balch, A. K. Adams, Y.-H, Li, and F. T. Mackenzie (1999), Biologically mediated dissolution of calcium carbonate above the chemical lysocline?, Deep Sea Res., Part I, 46, 1653-1669.
Nimer, N., and M. J. Merrett (1992), Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi (Lohmann), New Phytol., 121, 173-177.
Nimer, N. A., and M. J. Merrett (1993), Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon, New Phytol., 123, 673-677.
Nimer, N. A., C. Brownlee, and M. J. Merrett (1994), Carbon dioxide availability, intracellular pH and growth-rate of the coccolithophore Emiliania huxleyi, Mar. Ecol. Prog. Ser., 109, 257-262.
Paasche, E. (2002), A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions, Phycologia, 40, 503-529.
Passow, U. (2002), Transparent exopolymer particles (TEP) in aquatic environments, Prog. Oceanogr., 55, 287-333.
Purdie, D. A., and M. S. Finch (1994), Impact of a coccolithophorid bloom on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord, Sarsia, 79, 379-387.
Qiu, B. S., and K. S. Gao (2002), Effects of CO2 enrichment on the bloom-forming cyarrobacterium Microcystis aeruginosa (Cyanophyceae): Physiological responses and relationships with the availability of dissolved inorganic carbon, J. Phycol., 38, 721-729.
Redfield, A. C., B. H. Ketchum, and F. A. Richards (1963), The influence of organisms on the composition of sea-water, in The Composition of Sea-Water and Comparative and Descriptive Oceanography, edited by M. N. Hill, pp. 26-87, Wiley-Interscience, Hoboken, N. J.
Reynaud, S., N. Leclercq, S. Romaine-Lioud, C. Ferrier-Pagés, J. Jaubert, and J.-P. Gattuso (2003), Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral, Global Change Biol., 9, 1660-1668.
Richards, F. A. (1965), Anoxic basins arid fjords, in Chemical Oceanography, vol. 1, edited by J. P. Riley and G. Skirrow, pp. 611-645, Elsevier, New York.
Riebesell, U., D. A. Wolf-Gladrow, and V. Smetacek (1993), Carbon dioxide limitation of marine phytoplankton growth rates, Nature, 361, 249-251.
Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. Zeebe, and F. M. M. Morel (2000), Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364-367.
Robertson, J. E., C. Robinson, D. R. Turner, P. Holligan, A. J. Watson, P. Boyd, E. Fernandez, and M. Finch (1994), The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991, Deep Sea Res., Part I, 41, 297-314.
Rochelle-Newall, E., B. Delille, M. Frankignoulle, J.-P, Gattuso, S. Jacquet, U. Riebesell, A. Terbruggen, and I. Zondervan (2004), Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels, Mar. Ecol. Prog. Ser., 272, 25-31.
Rost, B., and U. Riebesell (2004), Coccolithophores and the biological pump: Responses to environmental changes, in Coccolithophores: From Molecular Processes to Global Impact, edited by H. R. Thierstein and J. R. Young, pp. 99-125, Springer, New York.
Roy, R., L. Roy, J. C. Vogel, C. Porter-Moore, T. Pearson, C. E. Good, F. J. Millero, and D. M. Campbell (1993), The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C, Mar. Chem., 44, 249-267.
Schroeder, D. C., J. Oke, G. Malin, and W. H. Wilson (2002), Coccolithovirus (Phycodnaviridae): Characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi, Arch. Virol., 147, 1685-1698.
Sciandra, A., J. Harlay, D. Lefevre, R. Lemée, P. Rimmelin, M. Denis, and J.P. Gattaso (2003), Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation, Mar. Ecol. Prog. Ser., 261, 111-122.
Sekino, K., and Y. Shiraiwa (1994), Accumulation and utilization of dissolved inorganic carbon by a marine unicellular coccolithophorid, Emiliania-huxleyi, Plant Cell Physiol., 35, 353-361.
Sikes, C. S., R. D. Roer, and K. M. Wilbur (1980), Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition, Limnol. Oceanogr., 25, 248-261.
Smith, S. V. (1985), Physical, chemical and biological characteristics of CO2 gas flux across the air-water interface, Plant Cell Environ., 8, 387-398.
Uppström, L. (1974), The boron-chlorinity ratio of deep seawater from the Pacific Ocean, Deep Sea Res. Oceanogr. Abstr., 21, 161-163.
Vaulot, D. (1989), CytoPC: Processing software for flow cytometric data, Signal Noise, 2, 8.
Weiss, R. F. (1974), Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203-215.
Wolf-Gladrow, D. A., U. Riebesell, S. Burkhardt, and J. Bijma (1999), Direct effects of CO2 concentration on growth and isotopic composition of marine plankton, Tellus, Ser. B, 51, 461-476.
Young, J. R. (1994), Variation in Emiliania huxleyi coccolith morphology in samples from the Norwegian EHUX experiment, Sarsia, 79, 417-425.
Zimmerman, R. C., D. G. Kohrs, D. L. Steller, and R. S. Alberte (1997), Impacts of CO2 enrichment on productivity and light requirements of eelgrass, Plant Physiol., 115, 599-607.
Zondervan, I., R. E. Zeebe, B. Rost, and U. Riebesell (2001), Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2, Global Biogeochem. Cycles, 15(2), 507-516.
Zondervan, I., B. Rost, and U. Riebesell (2002), Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths, J. Exp. Mar. Biol. Ecol., 272, 55-70.