Unpublished conference/Abstract (Scientific congresses and symposiums)
Diametral dimension(s) and prominent bounded sets
Demeulenaere, Loïc
2017Septièmes journées Besançon-Neuchâtel d’analyse fonctionnelle
 

Files


Full Text
Presentation_Besancon 2017.pdf
Author preprint (740.51 kB)
Beamer
Download
Annexes
Abstract_Besancon 2017.pdf
Publisher postprint (88.01 kB)
Abstract
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Diametral dimension; Prominent bounded sets
Abstract :
[en] The classical diametral dimension (Bessaga, Mityagin, Pelczynski, Rolewicz), denoted by "Delta", is a topological invariant which can be used to characterize Schwartz and nuclear locally convex spaces. Mityagin also introduced a variant of this diametral dimension, denoted by "Delta_b", using bounded sets in its definition, contrary to "Delta". In this talk, we present some conditions assuring the equality of these two diametral dimensions for Fréchet spaces. Among these conditions, there is the notion of existence of prominent bounded sets, due to Terzioglu. In fact, it appears that the existence of prominent sets is implied by the property "Omega Bar" of Vogt and Wagner. Finally, we describe a construction which gives Schwartz and nuclear non-Fréchet spaces E verifying "Delta_b(E) = \Delta(E)".
Disciplines :
Mathematics
Author, co-author :
Demeulenaere, Loïc  ;  Université de Liège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Diametral dimension(s) and prominent bounded sets
Publication date :
20 June 2017
Event name :
Septièmes journées Besançon-Neuchâtel d’analyse fonctionnelle
Event place :
Besançon, France
Event date :
From June 20 to June 23, 2017
Audience :
International
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Available on ORBi :
since 20 June 2017

Statistics


Number of views
78 (6 by ULiège)
Number of downloads
49 (4 by ULiège)

Bibliography


Similar publications



Contact ORBi