[en] Food borne ailments constitute a public health challenge and pose an incredible economic burden in healthcare system around the globe. This dilemma has urged authorities and other entities working in field of food quality control and supply chain to play a pivotal role in ensuring food safety. Analytical strategies have been developed using numerous systematic evolution of ligands by exponential enrichment (SELEX) methods to assure food safety. High-affinity and high-sensitivity ssDNA and RNA aptamers against pathogens have emerged as a novel strategy, as compared to the more resource-demanding and complicated biochemical test-based approaches. Thus, this review aims to focus on some methods used in the selection of specific bare, modified, and conjugated aptamers and on the further analysis of selected aptamers using flow cytometer or post-SELEX modifications for enhanced detection of frequently diagnosed foodborne bacteria such as Bacillus sp., Campylobacter jejuni, Escherichia sp., Salmonella sp., Staphylococcus aureus, Shigella sp., Listeria monocytogenes, and Streptococcus pyogenes and/or targeting their cell components towards attaining fast, sensitive, and selective methods for the detection of pathogens in food(s) or other sources.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Mukama, Omar; Jiangnan University > Laboratory of Carbohydrate Chemistry and Biotechnology
Rwibasira, Peter ; Université de Liège - ULiège > Form. doct. sc. (biol. orga. & écol. - paysage)
Sinumvayo, Jean Paul; Jiangnan University > Laboratory of Carbohydrate Chemistry and Biotechnology
Wang, Zhouping; Jiangnan University > Synergetic Innovation Center of Food Safety and Nutrition
Language :
English
Title :
An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens
Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus Biosensors and Bioelectronics 68:149–155 doi:http://dx.doi.org/10.1016/j.bios.2014.12.040
Amaya-Gonzalez S, de los Santos Alvarez N, Miranda-Ordieres AJ, Lobo-Castanon MJ (2013) Aptamer-based analysis: a promising alternative for food safety control. Sensors 13:16292–16311. doi:10.3390/s131216292
Ashley J, Ji K, Li SFY (2012) Selection of bovine catalase aptamers using non-SELEX. Electrophoresis 33:2783–2789. doi:10.1002/elps.201200032
Baird FJ, Gasser RB, Jabbar A, Lopata AL (2014) Foodborne anisakiasis and allergy. Mol Cell Probes 28:167–174. doi:10.1016/j.mcp.2014.02.003
Bansal J, Singh I, Bhatnagar PK, Mathur PC (2013) DNA sequence detection based on Raman spectroscopy using single walled carbon nanotube. J Biosci Bioeng 115:438–441. doi:10.1016/j.jbiosc.2012.11.002
Baumstummler A, Lehmann D, Janjic N, Ochsner UA (2014) Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components. Lett Appl Microbiol 59:422–431. doi:10.1111/lam.12295
Beier R, Boschke E, Labudde D (2014a) New strategies for evaluation and analysis of SELEX experiments. Biomed Res Int 2014:849743. doi:10.1155/2014/849743
Beier R, Pahlke C, Quenzel P, Henseleit A, Boschke E, Cuniberti G, Labudde D (2014b) Selection of a DNA aptamer against norovirus capsid protein VP1. FEMS Microbiol Lett 351:162–169. doi:10.1111/1574-6968.12366
Bieke Van Dorsta JM, Bekaertb K, Martina ER, De Coena W, Dubruelc P, Blusta R, Robbensa J (2010) Recent advances in recognition elements of food and environmental biosensors. Biosens Bioelectron 26:1178–1194
Bini A, Mascini M, Mascini M, Turner AP (2011) Selection of thrombin-binding aptamers by using computational approach for aptasensor application. Biosensors & bioelectronics 26:4411–4416. doi:10.1016/j.bios.2011.04.053
Bruno JGKJ (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. BioTechniques 32:175–180
Bruno J (2014) Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold pathogens 3:341–355 doi:10.3390/pathogens3020341
Bruno JG, Carrillo MP, Phillips T (2008) In vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes. Folia Microbiol 53:295–302. doi:10.1007/s12223-008-0046-6
Bruno JG, Carrillo MP, Phillips T, Andrews CJ (2010) A novel screening method for competitive FRET-aptamers applied to E. coli assay development. J Fluoresc 20:1211–1223. doi:10.1007/s10895-010-0670-9
Bruno JG, Phillips T, Carrillo MP, Crowell R (2009) Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluoresc 19:427–435. doi:10.1007/s10895-008-0429-8
Cao X et al (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37:4621–4628. doi:10.1093/nar/gkp489
Carlin NI, Lindberg AA (1987) Monoclonal antibodies specific for Shigella flexneri lipopolysaccharides: clones binding to type IV, V, and VI antigens, group 3,4 antigen, and an epitope common to all Shigella flexneri and Shigella dysenteriae type 1 stains. Infect Immun 55:1412–1420
Castro-Rosas J, Cerna-Cortes JF, Mendez-Reyes E, Lopez-Hernandez D, Gomez-Aldapa CA, Estrada-Garcia T (2012) Presence of faecal coliforms, Escherichia coli and diarrheagenic E. coli pathotypes in ready-to-eat salads, from an area where crops are irrigated with untreated sewage water. Int J Food Microbiol 156:176–180. doi:10.1016/j.ijfoodmicro.2012.03.025
CDC E (2013) Surveillance for foodborne disease outbreaks—United States, 1998–2008. Morb Mortal Wkly Rep 62
Chang Y-C, Yang C-Y, Sun R-L, Cheng Y-F, Kao W-C, Yang P-C (2013b) Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Scientific Reports 3:1863. doi:10.1038/srep01863
Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC (2013a) Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep 3:1863. doi:10.1038/srep01863
Chen CK (2007) Complex SELEX against target mixture: stochastic computer model, simulation, and analysis. Comput Methods Prog Biomed 87:189–200. doi:10.1016/j.cmpb.2007.05.008
Cho S, Lee SH, Chung WJ, Kim YK, Lee YS, Kim BG (2004) Microbead-based affinity chromatography chip using RNA aptamer modified with photocleavable linker. Electrophoresis 25:3730–3739. doi:10.1002/elps.200406103
Control CfD (2013) Surveillance for foodborne disease outbreaks—United States, 1998–2008 vol 60.
Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7:291–294. doi:10.1038/nmeth.1433
DeGrasse JA (2012a) A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 7:e33410. doi:10.1371/journal.pone.0033410
DeGrasse JA (2012b) A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 7:7. doi:10.1371/journal.pone.0033410
Drabovich A (2009) Aptamers in bioanalysis. John Wiley & Sons, Inc.
Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6:324–338
Duan N, Ding X, He L, Wu S, Wei Y, Wang Z (2013a) Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control 33:239–243. doi:10.1016/j.foodcont.2013.03.011
Duan N, Ding X, Wu S, Xia Y, Ma X, Wang Z, Chen J (2013b) In vitro selection of a DNA aptamer targeted against Shigella dysenteriae. J Microbiol Methods 94:170–174. doi:10.1016/j.mimet.2013.06.016
Duan N, Wu S, Chen X, Huang Y, Xia Y, Ma X, Wang Z (2013c) Selection and characterization of aptamers against Salmonella typhimurium using whole-bacterium Systemic Evolution of Ligands by Exponential Enrichment (SELEX). J Agric Food Chem 61:3229–3234. doi:10.1021/jf400767d
Duan N, Chang B, Zhang H, Wang Z, Wu S (2016) Salmonella tymphimurium detection using a surface-enhanced raman scattering based aptasensor. Int J Food Microbiol 218:38–43. doi:10.1016/j.ijfoodmicro.2015.11.006
Duan N et al (2013d) A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels. Anal Chim Acta 804:151–158. doi:10.1016/j.aca.2013.09.047
Dwivedi HP, Smiley RD, Jaykus LA (2013) Selection of DNA aptamers for capture and detection of Salmonella typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97:3677–3686. doi:10.1007/s00253-013-4766-4
Dwivedi H, Smiley RD, Jaykus L-A (2010a) Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334. doi:10.1007/s00253-010-2728-7
Dwivedi HP, Smiley RD, Jaykus L-A (2010b) Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334. doi:10.1007/s00253-010-2728-7
Elham Masoudipour SLM, Basiri M (2011) Specific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay. Progress in Biological Sciences 1:11–15
Elham Masoudipour, Seyed Latif Mousavi, Basiri M (2011) Specific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay Progress in Biological Sciences 1
Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus LA (2014) Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS One 9:106805. doi:10.1371/journal.pone.0106805
Fan M, McBurnett SR, Andrews CJ, Allman AM, Bruno JG, Kiel JL (2008) Aptamer selection express: a novel method for rapid single-step selection and sensing of aptamers. Journal of Biomolecular Techniques: JBT 19:311–319
Feng H, Beck J, Nassal M, Hu KH (2011) A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS One 6:27862. doi:10.1371/journal.pone.0027862
Fernandez PP (2006) Selection of an aptamer against surface exposed targets on yersinia pestis. Oklahoma State University, Research
Florian Jarosch KB, Klussmann S (2006) In vitro selection using a dual RNA library that allows primerless selection. Nucleic Acids Res 34:86
Giamberardino A et al (2013) Ultrasensitive norovirus detection using DNA aptasensor technology. PLoS One 8:e79087. doi:10.1371/journal.pone.0079087
Gong W, Duan N, Wu S, Huang Y, Chen X, Wang Z (2015) Selection, identification, and application of dual DNA aptamers against Shigella sonnei. Anal Methods 7:3625–3631. doi:10.1039/C5AY00214A
Hamula C, Guthrie J, Zhang H, Li X, Le X (2006) Selection and analytical applications of aptamers. TrAC Trends Anal Chem 25:681–691. doi:10.1016/j.trac.2006.05.007
Hamula CL, Le XC, Li XF (2011) DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal Chem 83:3640–3647. doi:10.1021/ac200575e
Hamula CLA, Peng H, Wang Z, Tyrrell GJ, Li X-F, Le XC (2016) An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes. Methods 97:51–57. doi:10.1016/j.ymeth.2015.12.005
Hamula CL, Zhang H, Guan LL, Li XF, Le XC (2008) Selection of aptamers against live bacterial cells. Anal Chem 80:7812–7819. doi:10.1021/ac801272s
Han SR, Lee SW (2013) In vitro selection of RNA aptamer specific to Salmonella typhimurium. J Microbiol Biotechnol 23:878–884. doi:10.4014/jmb.1212.12033
Hayat A, Andreescu S, Marty JL (2013) Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: application to the label free detection of small size molecules. Biosensors & bioelectronics 45:168–173. doi:10.1016/j.bios.2013.01.059
Helgason EOO, Caugant D et al (2000) Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630
Hernández R, Vallés C, Benito AM, Maser WK, Xavier Rius F, Riu J (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron 54:553–557. doi:10.1016/j.bios.2013.11.053
Huang YK, Chen XJ, Xia Y, Wu SJ, Duan N, Ma XY, Wang ZP (2014) Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin a. Anal Methods 6:690–697. doi:10.1039/c3ay41576g
Huenniger T, Wessels H, Fischer C, Paschke-Kratzin A, Fischer M (2014) Just in time-selection: a rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing. Anal Chem 86:10940–10947. doi:10.1021/ac503261b
Ikanovic M et al (2007) Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluoresc 17:193–199. doi:10.1007/s10895-007-0158-4
Iqbal A, Labib M, Muharemagic D, Sattar S, Dixon BR, Berezovski MV (2015) Detection of Cryptosporidium parvum oocysts on fresh produce using DNA aptamers. PLoS One 10:0137455. doi:10.1371/journal.pone.0137455
Islam D, Tzipori S, Islam M, Lindberg AA (1993) Rapid detection of Shigella dysenteriae and Shigella flexneri in faeces by an immunomagnetic assay with monoclonal antibodies European. journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology 12:25–32
Jay HPDRDSL-A (2013) Selection of DNA aptamers for capture and detection of SalmonellaTyphimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97:677–3686
Jaykus HPDRDSL-A (2010) Selection and characterization of DNA aptamers with binding selectivity toCampylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334
Kasahara Y, Irisawa Y, Ozaki H, Obika S, Kuwahara M (2013) 2′,4′-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg Med Chem Lett 23:1288–1292. doi:10.1016/j.bmcl.2012.12.093
Kathariou S, Food Prot J (2002) Listeria monocytogenesvirulence and pathogenicity, a food safety perspective. J Food Prot 65:1811–1829
Keefe AD, Cload ST (2008) SELEX with modified nucleotides. Curr Opin Chem Biol 12:448–456. doi:10.1016/j.cbpa.2008.06.028
Kim YS, Gu MB (2014) Advances in aptamer screening and small molecule aptasensors. Adv Biochem Eng Biotechnol 140:29–67. doi:10.1007/10_2013_225
Kim MA, Jeon HS, Shin SY, Baik BJ, Yang YM, Lee KY, Kim JG (2013b) Rapid detection of S. mutans surface antigen I/II using a sensitive monoclonal anti-Ag I/II antibody by ELISA. Monoclonal antibodies in immunodiagnosis and immunotherapy 32:336–340. doi:10.1089/mab.2013.0017
Kim YS, Song MY, Jurng J, Kim BC (2013c) Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell-systematic evolution of ligands by exponential enrichment approach. Anal Biochem 436:22–28. doi:10.1016/j.ab.2013.01.014
Kim L, Yu H-W, Kim Y-H, Kim I, Jang A (2013a) Potential of fluorophore labeled aptamers for Pseudomonas Aeruginosa detection in drinking water. J Korean Soc Appl Biol Chem 56:165–171. doi:10.1007/s13765-013-3019-7
Kim YS, Chung J, Song MY, Jurng J, Kim BC (2014) Aptamer cocktails: enhancement of sensing signals compared to single use of aptamers for detection of bacteria. Biosens Bioelectron 54:195–198. doi:10.1016/j.bios.2013.11.003
Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457. doi:10.1038/nbt.2556
King NJ, Whyte R, Hudson JA (2007) Presence and significance of Bacillus cereus in dehydrated potato products. J Food Prot 70:514–520
Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP (1996) Mirror-image RNA that binds D-adenosine. Nat Biotechnol 14:1112–1115. doi:10.1038/nbt0996-1112
Kopylov AM, Spiridonova VA (2000) Combinatorial chemistry of nucleic acids: SELEX. Mol Biol 34:940–954. doi:10.1023/a:1026696330245
Kotaro Fukuda DV, Sekiya S, Hwang J, Kakiuchi N, Taira K, Shimotohno K, Kumar PKR, Nishikawa S (2003) Isolation and characterization of RNA aptamers specific for hepatitis C virus nonstructural proteins 3 protease issue. Eur J Biochem 267:3685–3694
Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ et al (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77:651–666
Kuenne C, Vogets S, Pischimarov J, Oehm S, Goesmann A, Daniel R, Hain T, Chakraborty T (2010) Comparative analysis of plasmids in the genus Listeria. PLoS One 5:12511
Kulbachinskiy AV (2007) Methods for selection of aptamers to protein targets. Biochem Mosc 72:1505–1518. doi:10.1134/s000629790713007x
Lamba K et al (2016) Shiga toxin 1-producing Shigella sonnei infections, California, United States, 2014-2015. Emerg Infect Dis 22:679–686. doi:10.3201/eid2204.151825
Lee CH, Lee SH, Kim JH, Noh YH, Noh GJ, Lee SW (2015) Pharmacokinetics of a cholesterol-conjugated aptamer against the hepatitis C virus (HCV) NS5B. Protein Mol Ther Nucleic Acids 4:e254. doi:10.1038/mtna.2015.30
Li K, Lai Y, Zhang W, Jin L (2011) Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 84:607–613. doi:10.1016/j.talanta.2010.12.042
Lim YC, Kouzani AZ, Duan W (2010) Aptasensors: a review. J Biomed Nanotechnol 6:93–105
Lin H, Zhang W, Jia S, Guan Z, Yang CJ, Zhu Z (2014) Microfluidic approaches to rapid and efficient aptamer selection Biomicrofluidics 8 doi:10.1063/1.4890542
Litao Yang CWF, Cho EJ, Ellington AD (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79:3320–3329
Liu Guo-qing LY-Q, Chao G, Xiao-feng Y, Ming Z, Kai Z, Xuejiao C, Yi Y (2014) In vitro selection of DNA aptamers and fluorescence-based recognition for rapid detection Listeria monocytogenes. J Integr Agric 13:1121–1129
Liu G-Q et al (2014) In vitro selection of DNA aptamers and fluorescence-based recognition for rapid detection Listeria monocytogenes. J Integr Agric 13:1121–1129. doi:10.1016/s2095-3119(14)60766-8
Lu E, Elizondo-Riojas M-A, Chang JT, Volk DE (2014) Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data. Biochemistry 53:3523–3525. doi:10.1021/bi500443e
Ma X, Jiang Y, Jia F, Yu Y, Chen J, Wang Z (2014) An aptamer-based electrochemical biosensor for the detection of Salmonella. J Microbiol Methods 98:94–98. doi:10.1016/j.mimet.2014.01.003
Martell RE, Nevins JR, Sullenger BA (2002) Optimizing aptamer activity for gene therapy applications using expression cassette SELEX. Mol Ther 6:30–34. doi:10.1006/mthe.2002.0624
Marty JL Hayat A (2014) Aptamer based electrochemical sensors for emerging environmental pollutants Front Chem 2
Mathew A, Maekawa T, Sakthikumar D (2015) Aptamers in targeted nanotherapy Current Topics in Medicinal Chemistry 15:1102–1114
Mayer G, Ahmed M-SL, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protocols 5:1993–2004
McKeague M, Derosa MC (2012) Challenges and opportunities for small molecule aptamer development. Journal of nucleic acids 2012:748–913. doi:10.1155/2012/748913
McKeague M, Giamberardino A (2011) Advances in aptamer-based biosensors for food safety. Somerset (Ed.) edn. InTech
McKeague M, Giamberardino A, DeRosa CM (2011) Advances in aptamer-based biosensors for food safety. In: Somerset V (ed). Carleton University, Department of Chemistry Ottawa, Ontario,canada
McKeague M, Velu R, Hill K, Bardoczy V, Meszaros T, MC DR (2014) Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins 6:2435–2452. doi:10.3390/toxins6082435
Mei ZM, Chu HQ, Chen W, Xue F, Liu J, Xu HN, Zhang R, Zheng L (2013) Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor. Biosensors & bioelectronics 39:26–30
Ming Yang ZP, Ning Y, Chen Y, Zhou Q, Deng L (2013) Highly specific and cost-efficient detection of Salmonella Paratyphi A combining aptamers with single-walled carbon. Nanotubes Sensors 13:6865–6881
Moon J, Kim G, Lee S, Park S (2013) Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis. J Microbiol Methods 95:162–166. doi:10.1016/j.mimet.2013.08.005
Moon J, Kim G, Park S (2014) Development of ssDNA aptamers for the capture and detection of Salmonella typhimurium. Anal Methods 6:7442–7448. doi:10.1039/c4ay01035c
Moon J, Kim G, Park SB, Lim J, Mo C (2015) Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers. Sensors 15:8884–8897. doi:10.3390/s150408884
Mossali C et al (2010) Sensitive detection and quantification of anisakid parasite residues in food products. Foodborne Pathog Dis 7:391–397. doi:10.1089/fpd.2009.0428
Nitzsche R, Rosenheinrich M, Kreikemeyer B, Oehmcke-Hecht S (2015) Streptococcus pyogenes triggers activation of the human contact system by streptokinase. Infect Immun 83:3035–3042. doi:10.1128/IAI.00180-15
Nonaka Y, Yoshida W, Abe K, Ferri S, Schulze H, Bachmann TT, Ikebukuro K (2013) Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system. Anal Chem 85:1132–1137. doi:10.1021/ac303023d
Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK (2010) Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109:808–817. doi:10.1111/j.1365-2672.2010.04709.x
Ohuchi SP, Ohtsu T, Nakamura Y (2006) Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. Biochimie 88:897–904. doi:10.1016/j.biochi.2006.02.004
Park H-C, Baig I, Lee S-C, Moon J-Y, Yoon M-Y (2014a) Development of ssDNA aptamers for the sensitive detection of Salmonella typhimurium and Salmonella enteritidis. Appl Biochem Biotechnol 174:793–802. doi:10.1007/s12010-014-1103-z
Park H-C, Baig IA, Lee S-C, Moon J-Y, Yoon M-Y (2014b) Development of ssDNA aptamers for the sensitive detection of Salmonella typhimurium and Salmonella enteritidis. Appl Biochem Biotechnol 174:793–802. doi:10.1007/s12010-014-1103-z
Radi A-E (2011) Electrochemical aptamer-based biosensors. Recent Advances and Perspectives International Journal of Electrochemistry 2011:1–17. doi:10.4061/2011/863196
Raghavendra Joshi HJ, Hari P, Dwivedi TMA, Kumar S, Jayku L-A, Schefers J, Sreevatsan S (2009) Selection, characterization, and application of DNA aptamers for the capture and detection ofSalmonella entericaserovars. Mol Cell Probes 23:20–28
Savory N et al (2013) In silico maturation of binding-specificity of DNA aptamers against Proteus mirabilis. Biotechnol Bioeng 110:2573–2580. doi:10.1002/bit.24922
Scognamiglio V, Arduini F, Palleschi G, Rea G (2014) Biosensing technology for sustainable food safety. TrAC Trends Anal Chem 62:1–10. doi:10.1016/j.trac.2014.07.007
Sett A (2012) Aptasensors in health. Environment and Food Safety Monitoring Open Journal of Applied Biosensor 01:9–19. doi:10.4236/ojab.2012.12002
Shi X, He F, Lian Y, Yan D, Zhang X (2014) A new aptamer/SWNTs IDE-SPQC sensor for rapid and specific detection of Group A Streptococcus. Sensors and Actuators B: Chemical 198:431–437. doi:10.1016/j.snb.2014.03.067
So HM et al. (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors Small 4:197–201
Somer L, Kashi Y (2003) A PCR method based on 16S rRNA sequence for simultaneous detection of the genus listeria and the species Listeria monocytogenesin food products. J Food Prot 66:1658–1665
Spiridonova LN (2014) Introgression of nuclear and mitochondrial DNA markers of Mus musculus musculus to aboriginal populations of wild mice from Central Asia (M-m. wagneri) and South Siberia (M-m. gansuensis). Mol Biol 48:75–83. doi:10.1134/s0026893314010142
Spiridonova VA, Levashov PA, Ovchinnikova ED, Afanasieva OI, Glinkina KA, Adamova IY, Pokrovsky SN (2014) DNA aptamer-based sorbents for binding human IgE. Russian Journal of Bioorganic Chemistry 40:151–154. doi:10.1134/s1068162014020125
Stoltenburg R, Reinemann C, Strehlitz B (2005b) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383:83–91. doi:10.1007/s00216-005-3388-9
Stoltenburg R, Reinemann C, Strehlitz B (2005a) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383:83–91. doi:10.1007/s00216-005-3388-9
Stoltenburg R, Reinemann C, Strehlitz B (2007) SELE—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403. doi:10.1016/j.bioeng.2007.06.001
Stratis-Cullum DN, McMasters S, Pellegrino PM (2009) Evaluation of relative aptamer binding to campylobacter jejuni bacteria using affinity probe capillary electrophoresis. Anal Lett 42:2389–2402. doi:10.1080/00032710903137376
Subramanian Viswanathan JR (2008) Nanomaterials in electrochemical biosensors for food analysis—a review food and nutrition sciences 58:157–164
Suh SH, Jaykus L-A (2013) Nucleic acid aptamers for capture and detection of Listeria spp. J Biotechnol 167:454–461. doi:10.1016/j.jbiotec.2013.07.027
Suh SH, Dwivedi HP, Jaykus L-A (2014b) Development and evaluation of aptamer magnetic capture assay in conjunction with real-time PCR for detection of Campylobacter jejuni. LWT Food Sci Technol 56:256–260. doi:10.1016/j.lwt.2013.12.012
Suh SH, Dwivedi HP, Choi SJ, Jaykus LA (2014a) Selection and characterization of DNA aptamers specific for Listeria species. Anal Biochem 459:39–45. doi:10.1016/j.ab.2014.05.006
Sur DS, Ramamurthy T, Deen J, Bhattarcharya SK et al (2004) Shigellosis: challenges and management issues. Indian J Med 120:454–462
Thiel KW, Giangrande PH (2009) Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19:209–222. doi:10.1089/oli.2009.0199
Thiem VD et al (2004) Detection of Shigella by a PCR assay targeting the ipaH gene suggests increased prevalence of shigellosis in Nha Trang, Vietnam. Journal of Clinical Microbiology 42:2031–2035. doi:10.1128/JCM.42.5.2031-2035.2004
Tibor Hianik VO, Sonlajtnerova M, Grman I (2007) Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. bielectrochemistry 70:127–133
Tombelli SMM, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200
Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200. doi:10.1016/j.bioeng.2007.03.003
Torres-Chavolla E, Alocilja EC (2009) Aptasensors for detection of microbial and viral pathogens. Biosensors & bioelectronics 24:3175–3182. doi:10.1016/j.bios.2008.11.010
Tuerk CALG (1990a) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. BioTechniques. doi:10.2144/000113786
Tuerk CALG (1990b) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. BioTechniques 249:505–510. doi:10.2144/000113786
Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254. doi:10.1016/j.biotechadv.2009.12.004
Walker MJ et al (2014) Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 27:264–301. doi:10.1128/CMR.00101-13
Wang Y-X, Ye Z-Z, Si C-Y, Ying Y-B (2012) Application of aptamer based biosensors for detection of pathogenic microorganisms. Chin J Anal Chem 40:634–642. doi:10.1016/s1872-2040(11)60542-2
Wang KY, Zeng YL, Yang XY, Li WB, Lan XP (2011) Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 30:273–278. doi:10.1007/s10096-010-1074-0
Warda AK et al (2016) Linking Bacillus cereus genotypes and carbohydrate utilization capacity. PLoS One 11:e0156796. doi:10.1371/journal.pone.0156796
Wei Wu ZF, Zhaoa S, Lua X, Yua L, Meia T, Zeng L (2015) A simple aptamer biosensor for Salmonellae enteritidis based on fluorescence-switch signaling graphene oxide. RSC Adv 4:22009–22012. doi:10.1039/b000000x
Wenhe Wu JZ, Zheng M, Zhong Y, Yang J, Zhao Y, Wu W, Wei Ye JW, Wang Q, Lu J (2012) An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7. PLoS One 7:9. doi:10.1371/journal.pone.0048999.g002
Wu LH, Curran JF (1999) An allosteric synthetic DNA. Nucleic Acids Research 27:1512–1516. doi:10.1093/nar/27.6.1512
Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86:3100–3107. doi:10.1021/ac404205c
Xi Z, Huang R, Deng Y, He N (2014) Progress in selection and biomedical applications of aptamers. J Biomed Nanotechnol 10:3043–3062
Xu D-M, Wu M, Zou Y, Zhang Q, Wu C-C, Zhou Y, Liu X-J (2011) Application of aptamers in food safety. Chin J Anal Chem 39:925–933. doi:10.1016/s1872-2040(10)60447-1
Yang X-H, Kong W-J, Yang M-H, Zhao M, Ouyang Z (2013) Application of aptamer identification technology in rapid analysis of mycotoxins. Chin J Anal Chem 41:297–306. doi:10.1016/s1872-2040(13)60630-1
Yuan J, Tao Z, Yu Y, Ma X, Xia Y, Wang L, Wang Z (2014) A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold labeling. Food Control 37:188–192. doi:10.1016/j.foodcont.2013.09.046
Yun W, Li H, Chen S, Tu D, Xie W, Huang Y (2014) Aptamer-based rapid visual biosensing of melamine in whole milk. Eur Food Res Technol 238:989–995. doi:10.1007/s00217-014-2166-3
Zelada-Guillén GA, Bhosale SV, Riu J, Rius FX (2010) Real-time potentiometric detection of bacteria in complex samples. Anal Chem 82:9254–9260. doi:10.1021/ac101739b
Zhang X, Du X-J, Guan C, Li P, Zheng W-J, Wang S (2015) Detection of Vibrio cholerae by isothermal cross-priming amplification combined with nucleic acid detection strip analysis. Mol Cell Probes 29:208–214. doi:10.1016/j.mcp.2015.05.001
Zhijun Guoa JR, Wanga J, Wanga E (2011) Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta 85:2517–2521
Zhou L, Wang M-H, Wang J-P, Ye Z-Z (2011) Application of biosensor surface immobilization methods for aptamer Chinese. J Anal Chem 39:432–438. doi:10.1016/s1872-2040(10)60429-x
Zimmermann B, Bilusic I, Lorenz C, Schroeder R (2010) Genomic SELEX: a discovery tool for genomic aptamers. Methods (San Diego, Calif) 52:125–132. doi:10.1016/j.ymeth.2010.06.004
Zuo PLX, Dominguez DC, Ye BC (2013) A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Biosensor Bioelectron 13:3921–3928