[en] Lignin in plant biomass represents a target for engineering strategies towards the development of a sustainable bioeconomy. In addition to the conventional lignin monomers, namely p-coumaryl, coniferyl and sinapyl alcohols, tricin has been shown to be part of the native lignin polymer in certain monocot species. Because tricin is considered to initiate the polymerization of lignin chains, elucidating its biosynthesis and mechanism of export to the cell wall constitute novel challenges for the engineering of bioenergy crops. Late steps of tricin biosynthesis require two methylation reactions involving the pathway intermediate selgin. It has recently been demonstrated in rice and maize that caffeate O-methyltransferase (COMT) involved in the synthesis syringyl (S) lignin units derived from sinapyl alcohol also participates in the synthesis of tricin in planta. In this work, we validate in sorghum (Sorghum bicolor L.) that the O-methyltransferase responsible for the production of S lignin units (SbCOMT / Bmr12) is also involved in the synthesis of lignin-linked tricin. In particular, we show that biomass from the sorghum bmr12 mutant contains lower level of tricin incorporated into lignin, and that SbCOMT can methylate the tricin precursors luteolin and selgin. Our genetic and biochemical data point toward a general mechanism whereby COMT is involved in the synthesis of both tricin and S lignin units.
Disciplines :
Chemistry
Author, co-author :
Eudes, Aymerick; Joint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
Dutta, Tanmoy; Joint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America, Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, California, United States of America
Deng, Kei; Joint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America, Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
Jacquet, Nicolas ; Université de Liège, Agronomie, Bio-ingénierie et Chimie (AgroBioChem), Microbial, food and biobased technologies / Joint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America,
Sinha, Anagh; Joint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
Benites, Veronica T.; Joint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
Baidoo, Edward E. K.; Joint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
Richel, Aurore ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbial, food and biobased technologies
Sattler, Scott E.; Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United States of America
Northen, Trent R.; oint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, Joint Genome Institute, Walnut Creek, California, United States of America
Singh, Seema; Joint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America, Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, California, United States of America
Simmons, Blake A.; Joint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
Loqué, Dominique; Joint BioEnergy Institute, EmeryStation East, Emeryville, California, United States of America, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, Department of Plant and Microbial Biology, University of California, Berkeley, California, California, United States of America, Université Lyon 1, INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol 2003; 54:519-546. https://doi.org/10.1146/annurev.arplant.54.031902.134938 PMID: 14503002
Jouanin L, Goujon T, de Nadaï V, Martin MT, Mila I, Vallet C, et al. Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol 2000; 123:1363-1374. PMID: 10938354
Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, et al. Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci U S A 1999; 96:8955-8960. PMID: 10430877
Lan W, Rencoret J, Lu F, Karlen SD, Smith BG, Harris PJ, et al. Tricin-Lignins: occurrence and quantitation of tricin in relation to phylogeny. Plant J 2016; 88:1046-1057. https://doi.org/10.1111/tpj.13315 PMID: 27553717
Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph SA, et al. Tricin, a flavonoid monomer in monocot lignification. Plant Physiol 2015; 167:1284-1295. https://doi.org/10.1104/pp.114.253757 PMID: 25667313
Lan W, Morreel K, Lu F, Rencoret J, Carlos Del Río J, Voorend W, et al. Maize tricin-oligolignol metabolites and their implications for monocot lignification. Plant Physiol 2016; 171:810-820. https://doi.org/10.1104/pp.16.02012 PMID: 27208246
Eloy N, Voorend W, Lan W, Saleme ML, Cesarino I, Vanholme R, et al. Silencing chalcone synthase impedes the incorporation of tricin in lignin and increases lignin content. Plant Physiol 2017; 173:998-1016. https://doi.org/10.1104/pp.16.01108 PMID: 27940492
Lam PY, Liu H, Lo C. Completion of tricin biosynthesis pathway in rice: cytochrome P450 75B4 is a unique chrysoeriol 5′-hydroxylase. Plant Physiol 2015; 168:1527-1536. https://doi.org/10.1104/pp.15.00566 PMID: 26082402
Kim BG, Lee Y, Hur HG, Lim Y, Ahn J-H. Flavonoid 3′-O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry 2006; 67:387-394. https://doi.org/10.1016/j.phytochem.2005.11.022 PMID: 16412485
Lin F, Yamano G, Hasegawa M, Anzai H, Kawasaki S, Kodama O. Cloning and functional analysis of caffeic acid 3-O-methyltransferase from rice (Oryza sativa). J Pestic Sci 2006; 31:47-53.
Zhou J-M, Fukushi Y, Wollenweber E, Ibrahim RK. Characterization of two O-methyltransferases-like genes in barley and maize. Pharm Biol 2008; 46:26-34.
Zhou J-M, Fukushi Y, Wang X-F, Ibrahim RK. Characterization of a novel flavone O-methyltransferase gene in rice. Nat Prod Commun 2006; 1:981-984.
Fornalé S, Rencoret J, García-Calvo L, Encina A, Rigau J, Gutiérrez A, et al. Changes In cell wall polymers and degradability in maize mutants lacking 3′- and 5′-O-methyltransferases involved in lignin biosynthesis. Plant Cell Physiol 2017; 58:240-255. https://doi.org/10.1093/pcp/pcw198 PMID: 28013276
Koshiba T, Hirose N, Mukai M, Yamamura M, Hattori T, Suzuki S, et al. (2013). Characterization of 5-hydroxyconiferaldehyde O-methyltransferase in Oryza sativa. Plant Biotechnol 2013; 30:157-167.
Piquemal J, Chamayou S, Nadaud I, Beckert M, Barrière Y, Mila I, et al. Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol 2002; 130:1675-1685. https://doi.org/10.1104/pp.012237 PMID: 12481050
Bout S, Vermerris W. A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics 2003; 269:205-214. https://doi.org/10.1007/s00438-003-0824-4 PMID: 12756532
Green AR, Lewis KM, Barr JT, Jones JP, Lu F, Ralph J, et al. Determination of the structure and catalytic mechanism of sorghum bicolor caffeic acid O-methyltransferase and the structural impact of three brown midrib12 mutations. Plant Physiol 2014; 165:1440-1456. https://doi.org/10.1104/pp.114.241729 PMID: 24948836
Palmer NA, Sattler SE, Saathoff AJ, Funnell D, Pedersen JF, Sarath G. Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta 2008; 229:115-127. https://doi.org/10.1007/s00425-008-0814-1 PMID: 18795321
Sattler SE, Funnell-Harris DL, Pedersen JF. Efficacy of singular and stacked brown midrib 6 and 12 in the modification of lignocellulose and grain chemistry. J Agric Food Chem 2010; 58:3611-3616. https://doi.org/10.1021/jf903784j PMID: 20175527
Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, et al. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 2012; 10:609-620. https://doi.org/10.1111/j.1467-7652.2012.00692.x PMID: 22458713
Heikkinen S, Toikka MM, Karhunen PT, Kilpeläinen IA. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin. J Am Chem Soc 2003; 125:4362-4367. https://doi.org/10.1021/ja029035k PMID: 12670260
del Rio JC, Rencoret J, Prinsen P, Martinez AT, Ralph J, Gutierrez A. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 2012; 60:5922-5935. https://doi.org/10.1021/jf301002n PMID: 22607527
Kim H, Ralph J. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5). Org Biomol Chem 2010; 8:576-591. https://doi.org/10.1039/b916070a PMID: 20090974
Vanholme R, Ralph J, Akiyama T, Lu F, Pazo JR, Kim H, et al. Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis. Plant J 2010; 64:885-897. https://doi.org/10.1111/j.1365-313X.2010.04353.x PMID: 20822504
Yelle DJ, Ralph J, Frihart CR. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magn Reson Chem 2008; 46:508-517. https://doi.org/10.1002/mrc.2201 PMID: 18383438
Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 2012;1579-1589. https://doi.org/10.1038/nprot.2012.064 PMID: 22864199
Feng J-P, Wang X-L, Cao X-P. The first total synthesis of the (±)-palstatin. Chin J Chem 2006; 24:215-218.
Eudes A, Juminaga D, Baidoo EE, Collins FW, Keasling JD, Loqué D. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb Cell Fact 2013; 12:62. https://doi.org/10.1186/1475-2859-12-62 PMID: 23806124
Huber TD, Wang F, Singh S, Johnson BR, Zhang J, Sunkara M, et al. Functional AdoMet isosteres resistant to classical AdoMet degradation pathways. ACS Chem Biol 2016; 11:2484-2491. https://doi.org/10.1021/acschembio.6b00348 PMID: 27351335
Hartwig UA, Maxwell CA, Joseph CM, Phillips DA. Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol 1990; 92:116-122. PMID: 16667231
Matsuta T, Sakagami H, Satoh K, Kanamoto T, Terakubo S, Nakashima H, et al. Biological activity of luteolin glycosides and tricin from Sasa senanensis Rehder. In Vivo 2011; 25:757-762. PMID: 21753130
Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M et al. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A 2011; 108:3803-3808. https://doi.org/10.1073/pnas.1100310108 PMID: 21321194
Guo D, Chen F, Inoue K, Blount JW, Dixon RA. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 2011; 13:73-88.
Ho-Yue-Kuang S, Alvarado C, Antelme S, Bouchet B, Cézard L, Le Bris P, et al. Mutation in Brachypodium caffeic acid O-methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality. J Exp Bot 2016; 67:227-237. https://doi.org/10.1093/jxb/erv446 PMID: 26433202
Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F. RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 2012; 10:1067-1076. https://doi.org/10.1111/j.1467-7652.2012.00734.x PMID: 22924974
Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, et al. Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell 2010; 22:3357-3373. https://doi.org/10.1105/tpc.109.072827 PMID: 20952635
Zhou J-M, Seo YW, Ibrahim RK. Biochemical characterization of a putative wheat caffeic acid O-methyltransferase. Plant Physiol Biochem 2009; 47:322-326 https://doi.org/10.1016/j.plaphy.2008.11.011 PMID: 19211254
Zhou J-M, Gold ND, Martin VJ, Wollenweber E, Ibrahim RK. Sequential O-methylation of tricetin by a single gene product in wheat. Biochim Biophys Acta 2006; 1760:1115-1124. https://doi.org/10.1016/j.bbagen.2006.02.008 PMID: 16730127