Abstract :
[en] The main goal of the E-Cloud, as with every microgrid, is to maximize the consumption of energy produced locally. To reach this goal, based on consumption profiles of customers willing to participate in the E-cloud and given some local restrictions (e.g. wind turbines cannot be put everywhere), an optimal mix of green generation sources (in kW) and local storage (in kWh) needs to be computed.
Then according to this computation, the required generating units and storage device are installed. A repartition mechanism grants the customer a share of the generated electricity and storage capacity. These shares are either computed offline, or dynamically adapted on line. The project will test two models: either the DSO or a producer owns and operates the storage device.
Two flows of information (real-time for operation of the storage facility and ex-post for its settlement) are needed to correctly manage the E-Cloud and to ensure correct information exchange with the wholesale market. These information flows are completed thanks to a forecast that provides members of the E-Cloud the full capability to anticipate and obtain the maximum benefits of the local generation.
The expected benefits for the customer are a reduction of their electricity bill by a minimum of 10%. Societal benefits should also arise: 1) easing the technical integration of renewables’ generation embedded in the distribution network, and 2) avoids extra investment on the DSO network. The E-Cloud may also ensure new revenue for the DSO thanks to new services provided to the E-Cloud community.
Scopus citations®
without self-citations
1