Abstract :
[en] We study the problem of predicting Internet path changes and path performance using traceroute measurements and machine learning models. Path changes are frequently linked to path inflation and performance degradation, therefore the relevance of the problem. We introduce NETPerfTrace, an Internet Path Tracking system to forecast path changes and path latency variations. By relying on decision trees and using empirical distribution-based input features, we show that NETPerfTrace can predict (i) the remaining life time of a path before it actually changes and (ii) the number of path changes in a certain time period with relatively high accuracy. Through extensive evaluation, we demonstrate that NETPerfTrace highly outperforms DTRACK, a previous system with the same prediction targets. NETPerfTrace also offers path performance forecasting capabilities. In particular, our tool can predict path latency metrics, providing a system which can not only predict path changes, but also forecast their impact in terms of performance variations. We release NETPerfTrace as open software to the networking community, as well as all evaluation datasets.
Scopus citations®
without self-citations
4