Paper published in a book (Scientific congresses and symposiums)
NETPerfTrace – Predicting Internet Path Dynamics and Performance with Machine Learning
Wassermann, Sarah; Casas, Pedro; Cuvelier, Thibaut et al.
2017In Proceedings of Big-DAMA ’17
Peer reviewed
 

Files


Full Text
full_paper_embedded.pdf
Author preprint (403.47 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
network performance modeling; supervised learning; feature selection; distributed measurements; machine learning; traceroute; M-Lab; DTRACK
Abstract :
[en] We study the problem of predicting Internet path changes and path performance using traceroute measurements and machine learning models. Path changes are frequently linked to path inflation and performance degradation, therefore the relevance of the problem. We introduce NETPerfTrace, an Internet Path Tracking system to forecast path changes and path latency variations. By relying on decision trees and using empirical distribution-based input features, we show that NETPerfTrace can predict (i) the remaining life time of a path before it actually changes and (ii) the number of path changes in a certain time period with relatively high accuracy. Through extensive evaluation, we demonstrate that NETPerfTrace highly outperforms DTRACK, a previous system with the same prediction targets. NETPerfTrace also offers path performance forecasting capabilities. In particular, our tool can predict path latency metrics, providing a system which can not only predict path changes, but also forecast their impact in terms of performance variations. We release NETPerfTrace as open software to the networking community, as well as all evaluation datasets.
Disciplines :
Computer science
Author, co-author :
Wassermann, Sarah ;  Université de Liège - ULiège > Master sc. informatiques, à fin.
Casas, Pedro
Cuvelier, Thibaut ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation : Optimisation discrète
Donnet, Benoît  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorithmique des grands systèmes
Language :
English
Title :
NETPerfTrace – Predicting Internet Path Dynamics and Performance with Machine Learning
Publication date :
August 2017
Event name :
Big-DAMA '17: Workshop on Big Data Analytics and Machine Learning for Data Communication Networks
Event place :
Los Angeles, United States - California
Event date :
21-08-2017
Audience :
International
Main work title :
Proceedings of Big-DAMA ’17
Peer reviewed :
Peer reviewed
Name of the research project :
BigDAMA
Available on ORBi :
since 09 June 2017

Statistics


Number of views
1444 (27 by ULiège)
Number of downloads
477 (9 by ULiège)

Scopus citations®
 
8
Scopus citations®
without self-citations
4
OpenCitations
 
5
OpenAlex citations
 
10

Bibliography


Similar publications



Contact ORBi