[en] The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxide) suffers from two major drawbacks: brittleness and indium scarcity. Among emerging transparent electrodes, silver nanowire (AgNW) networks appear to be a promising substitute to ITO since such electrically percolating networks exhibit excellent properties with sheet resistance lower than 10 Ω/sq and optical transparency of 90%, fulfilling the requirements of most applications. In addition, AgNW networks also exhibit very good mechanical flexibility. The fabrication of these electrodes involves low-temperature processing steps and scalable methods, thus making them appropriate for future use as low-cost transparent electrodes in flexible electronic devices. This contribution aims to briefly present the main properties of AgNW based transparent electrodes as well as some considerations relating to their efficient integration in devices. The influence of network density, nanowire sizes, and post treatments on the properties of AgNW networks will also be evaluated. In addition to a general overview of AgNW networks, we focus on two important aspects: (i) network instabilities as well as an efficient Atomic Layer Deposition (ALD) coating which clearly enhances AgNW network stability and (ii) modelling to better understand the physical properties of these networks.
Disciplines :
Physics
Author, co-author :
Bellet, Daniel; Université de Grenoble Alpes > LMGP
Lagrange, Mélanie; Université de Grenoble Alpes > LMGP
Sannicolo, Thomas; Université de Grenoble Alpes > LMGP
Aghazadehchors, Sara ; Université de Liège - ULiège > Form. doct. sc. (phys. - Paysage)
Nguyen, Viet Huong; Université de Grenoble Alpes > LMGP
Langley, Daniel; La Trobe University > Department of Chemistry and Physics > ARC Centre of Excellence for Advanced Molecular Imaging
Munoz-Rojas, David; Université de Grenoble Alpes > LMGP
Jimenez, Carmen; Université de Grenoble Alpes > LMGP
Bréchet, Yves; Université de Grenoble Alpes > SIMAP
Nguyen, Ngoc Duy ; Université de Liège > Département de physique > Physique des solides, interfaces et nanostructures
Language :
English
Title :
Transparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration
Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 809-817.
Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20.
Hecht, D.S., Hu, L., Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482-1513.
Guo, W., Xu, Z., Zhang, F., Xie, S., Xu, H., Liu, X.Y. Recent Development of Transparent Conducting Oxide-Free Flexible Thin-Film Solar Cells. Adv. Funct. Mater. 2016, 26, 8855-8884.
Morgenstern, F.S.F., Kabra, D., Massip, S., Brenner, T.J.K., Lyons, P.E., Coleman, J.N., Friend, R.H. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Appl. Phys. Lett. 2011, 4, 183307.
Langley, D.P., Giusti, G., Lagrange, M., Collins, R., Jiménez, C., Bréchet, Y., Bellet, D. Silver nanowire networks: Physical properties and potential integration in solar cells. Sol. Energy Mater. Sol. Cells 2014, 125, 318-324.
Coskun, S., Selen Ates, E., Emrah Unalan, H. Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 2013, 24, 125202.
Celle, C., Mayousse, C., Moreau, E., Basti, H., Carella, A., Simonato, J.P. Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 2012, 5, 427-433.
Sorel, S., Bellet, D., Coleman, J.N. Relationship between Material Properties and Transparent Heater Performance for Both Bulk-like and Percolative Nanostructured Networks. ACS Nano 2014, 8, 4805-4814.
Van de Groep, J., Spinelli, P., Polman, A. Transparent Conducting Silver Nanowire Networks. Nano Lett. 2012, 12, 3138-3144.
Langley, D., Giusti, G., Mayousse, C., Celle, C., Bellet, D., Simonato, J.P. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 2013, 24, 452001.
Sannicolo, T., Lagrange, M., Cabos, A., Celle, C., Simonato, J.P., Bellet, D. Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: A Review. Small 2016, 12, 6052-6075.
Gao, J., Kempa, K., Giersig, M., Akinoglu, E.M., Han, B., Li, R. Physics of transparent conductors. Adv. Phys. 2016, 65, 553-617.
Lagrange, M., Langley, D.P., Giusti, G., Jiménez, C., Bréchet, Y., Bellet, D. Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing. Nanoscale 2015, 7, 17410-17423.
Deng, B., Hsu, P.C., Chen, G., Chandrashekar, B.N., Liao, L., Ayitimuda, Z., Wu, J., Guo, Y., Lin, L., Zhou, Y., et al. Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Lett. 2015, 15, 4206-4213.
Fortunato, E., Ginley, D., Hosono, H., Paine, D.C. Transparent conducting oxides for photovoltaics. MRS Bull. 2007, 32, 242-247.
Klein, A. Transparent Conducting Oxides: Electronic Structure-Property Relationship from Photoelectron Spectroscopy with in situ Sample Preparation. J. Am. Ceram. Soc. 2013, 96, 331-345.
Langley, D.P., Lagrange, M., Giusti, G., Jiménez, C., Bréchet, Y., Nguyen, N.D., Bellet, D. Metallic nanowire networks: effects of thermal annealing on electrical resistance. Nanoscale 2014, 6, 13535-13543.
Khaligh, H.H., Goldthorpe, I.A. Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Let. 2013, 8, 1-6.
Mayousse, C., Celle, C., Fraczkiewicz, A., Simonato, J.P. Stability of silver nanowire based electrodes under environmental and electrical stresses. Nanoscale 2015, 7, 2107-2115.
Chen, J., Zhou, W., Chen, J., Fan, Y., Zhang, Z., Huang, Z., Feng, X., Mi, B., Ma, Y., Huang, W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells. Nano Res. 2014, 8, 1017-1025.
Mayousse, C., Celle, C., Carella, A., Simonato, J.P. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS. Nano Res. 2014, 7, 315-324.
Rathmell, A.R., Nguyen, M., Chi, M., Wiley, B.J. Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks. Nano Lett. 2012, 12, 3193-3199.
Rathmell, A.R., Wiley, B.J. The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates. Adv. Mater. 2011, 23, 4798-4803.
De, S., Higgins, T.M., Lyons, P.E., Doherty, E.M., Nirmalraj, P.N., Blau, W.J., Boland, J.J., Coleman, J.N. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. ACS Nano 2009, 3, 1767-1774.
De, S., Coleman, J.N. The effects of percolation in nanostructured transparent conductors. MRS Bull. 2011, 36, 774-781.
Choi, S., Park, J., Hyun, W., Kim, J., Kim, J., Lee, Y.B., Song, C., Hwang, H.J., Kim, J.H., Hyeon, T., et al. Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. ACS Nano 2015, 9, 6626-6633.
Lee, P., Ham, J., Lee, J., Hong, S., Han, S., Suh, Y.D., Lee, S.E., Yeo, J., Lee, S.S., Lee, D., et al. Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite. Adv. Funct. Mater. 2014, 24, 5671-5678.
Atwa, Y., Maheshwari, N., Goldthorpe, I.A. Silver nanowire coated threads for electrically conductive textiles. J. Mater. Chem. C 2015, 3, 3908-3912.
De, S., King, P.J., Lyons, P.E., Khan, U., Coleman, J.N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano 2010, 4, 7064-7072.
Bellew, A.T., Manning, H.G., Gomes da Rocha, C., Ferreira, M.S., Boland, J.J. Resistance of Single Ag Nanowire Junctions and Their Role in the Conductivity of Nanowire Networks. ACS Nano 2015, 9, 11422-11429.
Li, J., Zhang, S.L. Conductivity exponents in stick percolation. Phys. Rev. E 2010, 81, 21120.
Li, J., Zhang, S.L. Finite-size scaling in stick percolation. Phys. Rev. E 2009, 80, 40104.
Vigolo, B., Coulon, C., Maugey, M., Zakri, C., Poulin, P. An Experimental Approach to the Percolation of Sticky Nanotubes. Science 2005, 309, 920-923.
Nirmalraj, P.N., Bellew, A.T., Bell, A.P., Fairfield, J.A., McCarthy, E.K., O'Kelly, C., Pereira, L.F.C., Sorel, S., Morosan, D., Coleman, J.N., et al. Manipulating Connectivity and Electrical Conductivity in Metallic Nanowire Networks. Nano Lett. 2012, 5966-5971.
Göbelt, M., Keding, R., Schmitt, S.W., Hoffmann, B., Jäckle, S., Latzel, M., Radmilovíc, V.V., Radmilovíc, V.R., Spiecker, E., Christiansen, S. Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes. Nano Energy 2015, 16, 196-206.
Bid, A., Bora, A., Raychaudhuri, A.K. Temperature dependence of the resistance of metallic nanowires of diameter ≥15 nm: Applicability of Bloch-Grüneisen theorem. Phys. Rev. B 2006, 74, 035426.
Lagrange, M., Sannicolo, T., Muñoz-Rojas, D., Lohan, B.G., Khan, A., Anikin, M., Jiménez, C., Bruckert, F., Bréchet, Y., Bellet, D. Understanding the mechanisms leading to failure in metallic nanowire-based transparent heaters, and solution for stability enhancement. Nanotechnology 2017, 28, 55709.
Tokuno, T., Nogi, M., Karakawa, M., Jiu, J., Nge, T.T., Aso, Y., Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215-1222.
Lee, J.Y., Connor, S.T., Cui, Y., Peumans, P. Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Lett. 2008, 8, 689-692.
Sannicolo, T., Muñoz-Rojas, D., Nguyen, N.D., Moreau, S., Celle, C., Simonato, J.P., Bréchet, Y., Bellet, D. Direct Imaging of the Onset of Electrical Conduction in Silver Nanowire Networks by Infrared Thermography: Evidence of Geometrical Quantized Percolation. Nano Lett. 2016, 16, 7046-7053.
Karim, S., Toimil-Molares, M.E., Balogh, A.G., Ensinger, W., Cornelius, T.W., Khan, E.U., Neumann, R. Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology 2006, 17.
Lee, J., Lee, P., Lee, H., Lee, D., Lee, S.S., Ko, S.H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408-6414.
Szkutnik, P.D., Roussel, H., Lahootun, V., Mescot, X., Weiss, F., Jiménez, C. Study of the functional properties of ITO grown by metalorganic chemical vapor deposition from different indium and tin precursors. J. Alloy. Compd. 2014, 603, 268-273.
Rey, G., Ternon, C., Modreanu, M., Mescot, X., Consonni, V., Bellet, D. Electron scattering mechanisms in fluorine-doped SnO2 thin films. J. Appl. Phys. 2013, 114, 183713.
Miller, M.S., O'Kane, J.C., Niec, A., Carmichael, R.S., Carmichael, T.B. Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics. ACS Appl. Mater. Interfaces 2013, 5, 10165-10172.
Jiu, J., Wang, J., Sugahara, T., Nagao, S., Nogi, M., Koga, H., Suganuma, K., Hara, M., Nakazawa, E., Uchida, H. The effect of light and humidity on the stability of silver nanowire transparent electrodes. RSC Adv. 2015, 5, 27657-27664.
Kwan, Y.C.G., Le, Q.L., Huan, C.H.A. Time to failure modeling of silver nanowire transparent conducting electrodes and effects of a reduced graphene oxide over layer. Sol. Energy Mater. Sol. Cells 2016, 144, 102-108.
Kholmanov, I.N., Domingues, S.H., Chou, H., Wang, X., Tan, C., Kim, J.Y., Li, H., Piner, R., Zarbin, A.J.G., Ruoff, R.S. Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes. ACS Nano 2013, 7, 1811-1816.
Muñoz-Rojas, D., MacManus-Driscoll, J. Spatial atmospheric atomic layer deposition: A new laboratory and industrial tool for low-cost photovoltaics. Mater. Horiz. 2014, 1, 314.
Nguyen, V.H., Resende, J., Jiménez, C., Deschanvres, J.L., Carroy, P., Muñoz, D., Bellet, D., Muñoz-Rojas, D. Deposition of ZnO based thin films by atmospheric pressure spatial atomic layer deposition for application in solar cells. J. Renew. Sustain. Energy 2017, 9, 21203.
Zhu, S., Gao, Y., Hu, B., Li, J., Su, J., Fan, Z., Zhou, J. Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 2013, 24, 335202.
Bergin, S.M., Chen, Y.H., Rathmell, A.R., Charbonneau, P., Li, Z.Y., Wiley, B.J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996-2004.
Bae, S., Kim, S.J., Shin, D., Ahn, J.H., Hong, B.H. Towards industrial applications of graphene electrodes. Phys. Scr. 2012, 2012, 14024.
Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 1976, 47, 4086-4089.
Tsai, C.H., Hsu, S.Y., Huang, T.W., Tsai, Y.T., Chen, Y.F., Jhang, Y.H., Lun, H., Wu, C.C., Chen, Y.S., Chen, C.W., et al. Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells. Org. Electron. 2011, 12, 2003-2011.
Giusti, G., Consonni, V., Puyoo, E., Bellet, D. High Performance ZnO-SnO2:F Nanocomposite Transparent Electrodes for Energy Applications. ACS Appl. Mater. Interfaces 2014, 6, 14096-14107.
Chang, M.H., Cho, H.A., Kim, Y.S., Lee, E.J., Kim, J.Y. Thin and long silver nanowires self-assembled in ionic liquids as a soft template: Electrical and optical properties. Nanoscale Res. Lett. 2014, 9.
Araki, T., Jiu, J., Nogi, M., Koga, H., Nagao, S., Sugahara, T., Suganuma, K. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Res. 2014, 7, 236-245.
Preston, C., Xu, Y., Han, X., Munday, J.N., Hu, L. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013, 6, 461-468.
Khanarian, G., Joo, J., Liu, X.Q., Eastman, P., Werner, D., O'Connell, K., Trefonas, P. The optical and electrical properties of silver nanowire mesh films. J. Appl. Phys. 2013, 114, 24302.
O'Callaghan, C., da Rocha, C.G., Manning, H.G., Boland, J.J., Ferreira, M.S. Effective medium theory for the conductivity of disordered metallic nanowire networks. Phys. Chem. Chem. Phys. 2016, 18, 27564-27571.
Da Rocha, C.G., Manning, H.G., O'Callaghan, C., Ritter, C., Bellew, A.T., Boland, J.J., Ferreira, M.S. Ultimate conductivity performance in metallic nanowire networks. Nanoscale 2015, 7, 13011-13016.
Large, M.J., Cann, M., Ogilvie, S.P., King, A.A.K., Jurewicz, I., Dalton, A.B. Finite-size scaling in silver nanowire films: design considerations for practical devices. Nanoscale 2016, 8, 13701-13707.
Kumar, A. Predicting efficiency of solar cells based on transparent conducting electrodes. J. Appl. Phys. 2017, 121, 014502.
Consonni, V., Rey, G., Roussel, H., Doisneau, B., Blanquet, E., Bellet, D. Preferential orientation of fluorine-doped SnO2 thin films: The effects of growth temperature. Acta Mater. 2013, 61, 22-31.
Kumar, A., Kulkarni, G.U. Evaluating conducting network based transparent electrodes from geometrical considerations. J. Appl. Phys. 2016, 119, 015102.