wind damage; timber storage terminals; sprinkling; crisis management; GIS; chablis; aires de stockage; aspersion; gestion de crise; SIG
Abstract :
[en] After catastrophic storm events, the storage of windblown timber is an effective measure for mitigating economic losses in the forest sector by preventing wood decay, protecting stands from secondary damage, and regulating the timber supply in the middle and long term. In this study, we first propose a GIS-based methodology for identifying suitable sprinkling storage terminals in Wallonia (Belgium). In addition, we suggest an approach for building a coherent regional network as well as methods for selecting and activating terminals within this network after a storm, depending on the severity and distribution of the damage. The GIS-based approach was used to crosscheck technical requirements related to sprinkling storage according to operational and environmental constraints in the Ardenne, which is the most forested sub-region of Wallonia. A three-step process was employed to identify suitable areas. Nine procurement areas were also delineated according to the regional forest inventory plots as a reference for choosing the terminals that should be included in the regional network and activated after the storm. We generated and evaluated 96 scenarios. In the second step, a network of 30 terminals was suggested, which corresponded to a storage capacity of 4 million m³. This network could facilitate the flexibility in the strategic management of storage after huge storms. The procurement area approach also helps addressing routing and transportation issues in a simple way. The GIS approach facilitates the selection of sprinkling storage terminals, but field validation and enhanced collaboration between public and private landowners and forest owners would still be needed. [fr] Lors de tempêtes de grande ampleur, le stockage rapide des chablis sous aspersion permet de limiter les pertes financières pour la filière forêt-bois en freinant la dépréciation qualitative des bois chablis, en limitant les risques phytosanitaires concomitants pour les peuplements sur pied et en permettant de réguler, à moyen et à long termes, l'approvisionnement des industries. Dans cet article, nous proposons une méthodologie basée sur un système d’information géographique (SIG) en vue d’identifier un réseau de sites potentiels de stockage sous aspersion en Wallonie (Belgique). Un modèle SIG a été utilisé pour croiser les exigences techniques relatives au stockage sous aspersion avec des contraintes opérationnelles et environnementales pour le cas spécifique de l’Ardenne, zone la plus boisée de Wallonie. Des zones d’approvisionnement homogènes ont aussi été délimitées pour faciliter la sélection des sites et leur activation après tempête. Un réseau de 30 sites potentiels de stockage, correspondant à une capacité totale de 4 millions de m³, a été identifié. Ce réseau permettrait une grande flexibilité dans la gestion stratégique du stockage, notamment en matière de répartition de la capacité et d’optimisation des couts. Ce réseau est en théorie adapté à la problématique du stockage de bois chablis à l'échelle régionale, il reste nécessaire de procéder à une validation sur le terrain des sites et d’élaborer un protocole de collaboration entre les propriétaires fonciers et forestiers publics et privés.
Alderweireld M., Burnay F., Pitchugin M. & Lecomte H., 2015. Inventaire forestier wallon-Résultats 1994-2012. Jambes, Belgique: SPW, DGO3, DNF, Direction des Ressources forestières.
Andersson G., Flisberg P., Lidén B. & Rönnqvist M., 2008. RuttOpt-A decision support system for routing of logging trucks. Can. J. For. Res., 38, 1784-1796.
Audy J.-F., D’Amours S. & Rönnqvist M., 2012a. Planning methods and decision support systems in vehicle routing problems for timber transportation: a review. CIRRELT-2012-38. Québec, Canada: Université Laval.
Audy J.-F., Lehoux N., D’Amours S. & Rönnqvist M., 2012b. A framework for an efficient implementation of logistics collaborations. Int. Trans. Oper. Res., 19, 633-657.
Bergdahl A., Örtendahl A. & Fjeld D., 2003. The economic potential for optimal destination of roundwood in North Sweden-Effects of planning horizon and delivery precision. Int. J. For. Eng., 14, 81-88.
Björheden R., 2007. Possible effects of the hurricane Gudrun on the regional Swedish forest energy supply. Biomass Bioenergy, 31, 617-622.
Björheden R. & Helstad K., 2005. Raw material procurement in sawmills’ business level strategy-A contingency perspective. Int. J. For. Eng., 16, 47-56.
Bourcet J., Bourget C. & Danguy des Déserts D., 2008. Le transport du bois et sa logistique. Paris: Conseil général de l’Environnement et du Développement durable (CGEDD) & Conseil général de l’Agriculture, de l’Alimentation et des Espaces ruraux (CGAAER).
Broman H., Frisk M. & Rönnqvist M., 2009. Supply chain planning of harvest and transportation operations after the storm Gudrun. INFOR, 47, 235-245.
Bründl M. & Rickli C., 2002. The storm Lothar 1999 in Switzerland-An incident analysis. For. Snow Landscape Res., 77, 207-216.
Brunette M. & Couture S., 2008. Public compensation for windstorm damage reduces incentives for risk management investments. For. Policy Econ., 10, 491-499.
Brunette M., Couture S. & Laye J., 2012. Optimizing forest production when storms have an impact on both production and price: a Markov decision process approach. Nancy, France: INRA.
Carlsson D. & Rönnqvist M., 2007. Backhauling in forest transportation: models, methods, and practical usage. Can. J. For. Res., 37, 2612-2623.
Caurla S., Garcia S. & Niedzwiedz A., 2015. Store or export? An economic evaluation of financial compensation to forest sector after windstorm. The case of Hurricane Klaus. For. Policy Econ., 61, 30-38.
Costa S. & Ibanez L., 2005. Can wood storage be profitable? French experience after the windstorms in 1999. J. For. Econ., 11, 161-176.
Elowsson T. & Liukko K., 1995. How to achieve effective wet storage of pine logs (Pinus sylvestris) with a minimum amount of water. For. Prod. J., 45, 36-46.
Epstein R., Rönnqvist M. & Weintraub A., 2007. Forest transportation. In: Weintraub A. et al., eds. Handbook of operations research in natural resources. Springer US, 391-403.
Fink A.H. et al., 2009. The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci., 9, 405-423.
Forsberg M., Frisk M. & Rönnqvist M., 2005. FlowOpt-a decision support tool for strategic and tactical transportation planning in forestry. Int. J. For. Eng., 16, 101-114.
Frisk M., Göthe-Lundgren M., Jörnsten K. & Rönnqvist M., 2010. Cost allocation in collaborative forest transportation. Eur. J. Oper. Res., 205, 448-458.
Gardiner B. et al., 2010. Destructive storms in European forests: past and forthcoming impacts. Final report to the European Commission-DG Environment. Joensuu, Finland: European Forest Institute.
Grayson A.J., 1989. The 1987 Storm. Impacts and responses. London: Her Majesty’s Stationery Office.
Hartebrodt C., 2004. The impact of storm damage on small-scale forest enterprises in the south-west of Germany. Small-scale For., 3, 203-222.
Hedmark Å. & Scholz M., 2008. Review of environmental effects and treatment of runoff from storage and handling of wood. Bioresour. Technol., 99, 5997-6009.
Karremann M.K., Pinto J.G., Reyers M. & Klawa M., 2014. Return periods of losses associated with European windstorm series in a changing climate. Environ. Res. Lett., 9, 124016.
Kons K. et al., 2014. Characteristics of Swedish forest biomass terminals for energy. Int. J. For. Eng., 25, 238-246.
Latour S., Kiffer A., Moreau J. & Dadoun G., 2009. Étude sur la faisabilité du stockage du bois chablis par voie humide. Gradignan, France: Fédération des Industries du Bois d’Aquitaine.
Leckebusch G. et al., 2006. Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Clim. Res., 31, 59-74.
Liese W., 1984. Wet storage of windblown conifers in Germany. N. Z. J. For., 29, 119-135.
Lindroth A. et al., 2009. Storms can cause Europe-wide reduction in forest carbon sink. Global Change Biol., 15, 346-355.
Moore J.R., Manley B.R., Park D. & Scarrott C.J., 2013. Quantification of wind damage to New Zealand’s planted forests. Forestry, 86, 173-183.
Murphy G., 2003. Reducing trucks on the road through optimal route scheduling and shared log transport services. South. J. Appl. For., 27, 198-205.
Nieuwenhuis M. & O’connor E., 2001. Financial impact evaluation of catastrophic storm damage in Irish forestry: a case study. I. Stumpage losses. Forestry, 74, 369-381.
Peralta P.N., Syme J.H. & McAlister R.H., 1993. Water storage and plywood processing of hurricane-downed southern pine timber. For. Prod. J., 43, 53-58.
Pischedda D., 2004. Technical guide on harvesting and conservation of storm damaged timber. Paris: CTBA.
Prestemon J.P. & Holmes T.P., 2004. Market dynamics and optimal timber salvage after a natural catastrophe. For. Sci., 50, 495-511.
Rauch P. & Gronalt M., 2010. The terminal location problem in the forest fuels supply network. Int. J. For. Eng., 21, 32-40.
Riguelle S., 2010. Plan chablis: guide pour la gestion des crises chablis en Wallonie. Jambes, Belgique: Service public de Wallonie.
Riguelle S., Hébert J. & Jourez B., 2015. WIND-STORM: a decision support system for the strategic management of windthrow crises by the forest community. Forests, 6, 3412-3432.
Riguelle S., Hébert J. & Jourez B., 2016. Integrated and systemic management of storm damage by the forest-based sector and the public authorities. Ann. For. Sci., 73, 585-600.
Schönenberger W., 2002. Post windthrow stand regeneration in Swiss mountain forests: the first ten years after the 1990 storm Vivian. For. Snow Landscape Res., 77, 61-80.
Schütz J.P., Götz M., Schmid W. & Mandallaz D., 2006. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur. J. For. Res., 125, 291-302.
Schwarzbauer P. & Rauch P., 2013. Impact on industry and markets-roundwood prices and procurement risks. In: Gardiner B. et al., eds. Living with storm damage to forests. Joensuu, Finland: European Forest Institute, 64-69.
Schwierz C. et al., 2010. Modelling European winter wind storm losses in current and future climate. Clim. Change, 101, 485-514.
Seidl R., Schelhaas M.J. & Lexer M.J., 2011. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biol., 17, 2842-2852.
Seidl R. et al., 2013. Scaling issues in forest ecosystem management and how to address them with models. Eur. J. For. Res., 132, 653-666.
Syme J.H. & Saucier J.R., 1995. Effects of long-term storage of southern pine sawlogs under water sprinklers. For. Prod. J., 45, 47-50.
Thom D. et al., 2013. Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For. Ecol. Manage., 307, 293-302.
van Lierop P., Lindquist E., Sathyapala S. & Franceschini G., 2015. Global forest area disturbance from fire, insect pests, diseases and severe weather events. For. Ecol. Manage., 352, 78-88.
Zeng N. et al., 2013. Carbon sequestration via wood harvest and storage: an assessment of its harvest potential. Clim. Change, 118, 245-257.