[en] Despite numerous studies of transition metal dichalcogenides, the diversity of their chemical bonding characteristics and charge transfer is not well understood. Based on density functional theory we investigate their static and dynamic charges. The dynamic charge of the transition metal dichalcogenides with trigonal symmetry are anomalously large, while in their hexagonally symmetric counterparts, we even observe a counterintuitive sign, i.e., the transition metal takes a negative charge, opposite to its static charge. This phenomenon, so far never remarked on or analyzed, is understood by investigating the perturbative response of the system and by investigating the hybridization of the molecular orbitals near the Fermi level. Furthermore, a link is established
between the sign of the Born effective charge and the process of π backbonding from organic chemistry.
Experiments are proposed to verify the calculated sign of the dynamical charge in these materials. Employing a high-throughput search we also identify other materials that present counterintuitive dynamic charges.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Pike, Nicholas ; Université de Liège > Département de physique > Physique des matériaux et nanostructures
Van Troeye, Benoit
Dewandre, Antoine ; Université de Liège > Département de physique > Physique des matériaux et nanostructures
Petretto, Guido
Gonze, Xavier
Rignanese, Gian-Marco
Verstraete, Matthieu ; Université de Liège > Département de physique > Physique des matériaux et nanostructures
Language :
English
Title :
Origin of the counterintuitive dynamic charge in the transition metal dichalcogenides
Publication date :
May 2017
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society
Volume :
95
Pages :
201106(R)
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. Pumera, Z. Sofer, and A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage, J. Mater. Chem. A 2, 8981 (2014). 2050-7488 10.1039/c4ta00652f
D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano 8, 1102 (2014). 1936-0851 10.1021/nn500064s
A. A. Tedstone, D. J. Lewis, and P. O'Brian, Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides, Chem. Mater. 28, 1965 (2016). CMATEX 0897-4756 10.1021/acs.chemmater.6b00430
A. Gupta, T. Sakthivel, and S. Seal, Recent developments in 2D materials beyond graphene, Prog. Mater. Sci. 73, 44 (2015). PRMSAQ 0079-6425 10.1016/j.pmatsci.2015.02.002
G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, Recent advances in two-dimensional materials beyond graphene, ACS Nano 9, 11509 (2015). 1936-0851 10.1021/acsnano.5b05556
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronic and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699 (2012). 1748-3387 10.1038/nnano.2012.193
C. Espejo, T. Rangel, A. H. Romero, X. Gonze, and G.-M. Rignanese, Band structure tunability in (Equation presented) under interlayer compression: A DFT and (Equation presented) study, Phys. Rev. B 87, 245114 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.245114
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer (Equation presented) Transistors, Nat. Nanotechnol. 6, 147 (2011). 1748-3387 10.1038/nnano.2010.279
N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, Second harmonic microscopy of monolayer (Equation presented), Phys. Rev. B 87, 161403 (R) (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.161403
A. Kuc, T. Heine, and A. Kis, Electronic properties of transition-metal dichalcogenides, MRS Bull. 40, 577 (2015). MRSBEA 0883-7694 10.1557/mrs.2015.143
R. M. White and G. Lucovsky, Chemical bonding and structure in layered transition metal dichalcogenides, Solid State Commun. 11, 1369 (1972). SSCOA4 0038-1098 10.1016/0038-1098(72)90545-5
H. P. Vaterlaus and F. Levy, Phonons and free carriers in group IVB transition-metal dichalcogenides, J. Phys. C: Solid State Phys. 18, 2351 (1985). JPSOAW 0022-3719 10.1088/0022-3719/18/11/016
G. Lucovsky, R. M. White, J. A. Benda, and J. F. Revelli, Infrared-reflectance spectra of layered group-IV and group-VI transition-metal dichalcogenides, Phys. Rev. B 7, 3859 (1973). 1098-0121 10.1103/PhysRevB.7.3859
J.-Q. Li and D.-P. Huang, The energy band structures and chemical bonds of solid state compounds with low-dimensional structures Part I: Delocalized (Equation presented) bonding and conductivity of transition metal compounds with low-dimensional structures, J. Mol. Struct.: THEOCHEM 363, 23 (1996). THEODJ 0166-1280 10.1016/0166-1280(95)04400-0
C. M. Fang, R. A. de Groot, and C. Haas, Bulk and surface electronic structure of (Equation presented) and (Equation presented), Phys. Rev. B 56, 4455 (1997). PRBMDO 1098-0121 10.1103/PhysRevB.56.4455
Y.-H. Liu, S. H. Porter, and J. E. Goldberger, Dimensional reduction of a layered metal chalcogenide into a 1D near-IR direct band gap semiconductor, J. Am. Chem. Soc. 134, 5044 (2012). JACSAT 0002-7863 10.1021/ja211765y
S. Sharma, T. Nautiyal, G. S. Singh, S. Auluck, P. Blaha, and C. Ambrosh-Draxl, Electronic structure of (Equation presented), Phys. Rev. B 59, 14833 (1999). PRBMDO 1098-0121 10.1103/PhysRevB.59.14833
R. M. Martin, Electronic structure: Basic Theory and Practice Methods (Cambridge University Press, Cambridge, UK, 2004).
S. Baroni, S. de Gironcoli, A. D. Corso, and P. Gainnozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, 515 (2001). RMPHAT 0034-6861 10.1103/RevModPhys.73.515
X. Gonze, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm, Phys. Rev. B 55, 10337 (1997). PRBMDO 1098-0121 10.1103/PhysRevB.55.10337
X. Gonze and C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and, interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55, 10355 (1997). PRBMDO 1098-0121 10.1103/PhysRevB.55.10355
R. F. W. Bader, Atoms in molecules, Acc. Chem. Res. 18, 9 (1985). ACHRE4 0001-4842 10.1021/ar00109a003
F. L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta 44, 129 (1977). TCHAAM 0040-5744 10.1007/BF00549096
J. Meister and W. H. E. Schwarz, Principal components of ionicity, J. Phys. Chem. 98, 8245 (1994). JPCHAX 0022-3654 10.1021/j100084a048
P. Ghosez, J.-P. Michenaud, and X. Gonze, Dynamical atomic charges: The case of (Equation presented) compounds, Phys. Rev. B 58, 6224 (1998). PRBMDO 1098-0121 10.1103/PhysRevB.58.6224
P. Ghosez, X. Gonze, P. Lambin, and J.-P. Michenaud, Born effective charges of barium titanate: Band-by-band decomposition and sensitivity to structural features, Phys. Rev. B 51, 6765 (1995). PRBMDO 1098-0121 10.1103/PhysRevB.51.6765
F. Detraux, P. Ghosez, and X. Gonze, Anomalously large Born effective charges in cubic (Equation presented), Phys. Rev. B 56, 983 (1997). PRBMDO 1098-0121 10.1103/PhysRevB.56.983
T. Sohier, M. Calandra, and F. Mauri, Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations, Phys. Rev. B 94, 085415 (2016). 1098-0121 10.1103/PhysRevB.94.085415
M. Danovich, I. L. Aleiner, N. D. Drummond, and V. I. Fal'ko, Fast relaxation of photo-excited carriers in 2D transition metal dichalcogenides, IEEE J. Sel. Top. Quantum Electron. 23, 6000105 (2017). 10.1109/JSTQE.2016.2583059
C. Ataca, H. Sahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, J. Phys. Chem. C 116, 8983 (2012). 1932-7447 10.1021/jp212558p
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.95.201106 for additional information on the calculation methods, dynamic partition of the Bader charge, band-by-band decomposition, and possible experimental measurements which includes Refs. [9,20,25,33,35,36,38,40-48,53,55,59,60].
X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, and D. C. Allan, A brief introduction to the ABINIT software package, Zeit. Kristallogr. 220, 558 (2005). 10.1524/zkri.220.5.558.65066
X. Gonze, B. Amadon, P. M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, ABINIT: First-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180, 2582 (2009). CPHCBZ 0010-4655 10.1016/j.cpc.2009.07.007
X. Gonze, F. Jollet, F. A. Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, Recent developments in the ABINIT software package, Comput. Phys. Commun. 205, 106 (2016). CPHCBZ 0010-4655 10.1016/j.cpc.2016.04.003
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996). PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865
M. Fuchs and M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Comput. Phys. Commun. 119, 67 (1999). CPHCBZ 0010-4655 10.1016/S0010-4655(98)00201-X
M. Torrent, F. Jollet, F. Bottin, G. Zérah, and X. Gonze, Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure, Comput. Mater. Sci. 42, 337 (2008). CMMSEM 0927-0256 10.1016/j.commatsci.2007.07.020
M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, Libxc: A library of exchange and correlation functionals for density functional theory, Comput. Phys. Commun. 183, 2272 (2012). CPHCBZ 0010-4655 10.1016/j.cpc.2012.05.007
B. V. Troeye, M. Torrent, and X. Gonze, Interatomic force constants including the DFT-D dispersion contribution, Phys. Rev. B 93, 144304 (2016). 1098-0121 10.1103/PhysRevB.93.144304
S. Grimme, S. Ehrlich, and L. Goerigk, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132, 154104 (2010). JCPSA6 0021-9606 10.1063/1.3382344
R. Dickinson and L. Pauling, The crystal structure of molybdinite, J. Am. Chem. Soc. 45, 1466 (1923). JACSAT 0002-7863 10.1021/ja01659a020
L. H. Brixner, Preparation and properties of the single crystalline (Equation presented)-type selenides and tellurides of niobium, tantalum, molybdenum, and tungsten, J. Inorg. Nucl. Chem. 24, 257 (1962). JINCAO 0022-1902 10.1016/0022-1902(62)80178-X
A. Berkdemir, H. R. Guiterrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C-I. Chia, V. H. Crespi, F. Lopez-Urias, J-C. Charlier, H. Terrones, and M. Terrones, Identification of individiual and few layers of (Equation presented) using Raman spectroscopy, Sci. Rep. 3, 1755 (2013). 2045-2322 10.1038/srep01755
M. Traving, M. Boehme, L. Kipp, M. Skibowski, F. Starrost, E. E. Krosovskii, A. Perlov, and W. Schattke, Electronic structure of (Equation presented): A combined photoemission and inverse photoemission study, Phys. Rev. B 55, 10392 (1997). PRBMDO 1098-0121 10.1103/PhysRevB.55.10392
C. Wan, Y. Wang, N. Wang, and K. Koumoto, Low-thermal-conductivity (Equation presented) ((Equation presented), Bi, Sn) misfit layer compounds for bulk thermoelectrics, Materials 3, 2606 (2010). 1996-1944 10.3390/ma3042606
P. Chen, Y-H. Chan, X-Y. Fang, Y. Zhang, M. Y. Chou, S.-K. Mo, Z. Hussain, A. V. Fedorov, and T. C. Chaing, Charge density wave transition in single-layer titanium diselenide, Nat. Commun. 6, 8943 (2015). 2041-1723 10.1038/ncomms9943
P. E. Blochl, Projected augmented-wave method, Phys. Rev. B 50, 17953 (1994). PRBMDO 1098-0121 10.1103/PhysRevB.50.17953
F. Jollet, M. Torrent, and N. Holzwarth, Generation of projected augmented-wave atomic data: A 71 element validated table in XML format, Comput. Phys. Commun. 185, 1246 (2014). CPHCBZ 0010-4655 10.1016/j.cpc.2013.12.023
Q.-C. Sun, X. S. Xu, L. I. Vergara, R. Rosentsveig, and J. L. Musfeldt, Dynamical charge and structural strain in inorganic fullerenelike (Equation presented) nanoparticles, Phys. Rev. B 79, 205405 (2009). PRBMDO 1098-0121 10.1103/PhysRevB.79.205405
T. J. Wieting, A. Grisel, and F. Levy, Interlayer bonding and localized charge in (Equation presented) and (Equation presented), Physica B 99, 337 (1980). PHBCDQ 0378-4363 10.1016/0378-4363(80)90256-9
R. D. Luttrell, S. Brown, J. Cao, J. L. Musfeldt, R. Rosentsveig, and R. Tenne, Dynamics of bulk versus nanoscale (Equation presented): Local strain and charging effects, Phys. Rev. B 73, 035410 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.73.035410
S.-I. Uchida and S. Tanaka, Optical phonon modes and localized effective charges of transition-metal dichalogenides, J. Phys. Soc. Jpn. 45, 153 (1978). JUPSAU 0031-9015 10.1143/JPSJ.45.153
A. Kokalj, Computer graphics and graphical user interface as tools in simulations of matter at the atomic scale, Comput. Mater. Sci. 28, 155 (2003). CMMSEM 0927-0256 10.1016/S0927-0256(03)00104-6
P. Ghosez and X. Gonze, Band-by-band decompositions of the Born effective charges, J. Phys.: Condens. Matter 12, 9179 (2000). JCOMEL 0953-8984 10.1088/0953-8984/12/43/308
M. Veithen, X. Gonze, and P. Ghosez, Electron localization: Band-by-band decomposition and application to oxides, Phys. Rev. B 66, 235113 (2002). PRBMDO 1098-0121 10.1103/PhysRevB.66.235113
P. D. Fleischauer, J. R. Lince, P. A. Bertrand, and R. Bauer, Electronic structure and lubrication properties of (Equation presented): A qualitative molecular orbital approach, Langmuir 5, 1009 (1989). LANGD5 0743-7463 10.1021/la00088a022
E. I. Stiefel, R. Eisenberg, R. C. Rosenberg, and H. B. Gray, Characterization and electronic structure of six-coordinate trigonal-prismatic complexes, J. Am. Chem. Soc. 88, 2956 (1966). JACSAT 0002-7863 10.1021/ja00965a015
G. L. Meissler, P. J. Fischer, and D. A. Tarr, Inorganic Chemistry, 5th ed. (Pearson, New York, 2014).
M. Veithen, X. Gonze, and P. Ghosez, Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory, Phys. Rev. B 71, 125107 (2005). PRBMDO 1098-0121 10.1103/PhysRevB.71.125107
D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, Raman spectra of monolayer, few-layer and bulk (Equation presented): An anisotropic layered semiconductor, ACS Nano 8, 11154 (2014). 10.1021/nn5053926
V. Ney, W. K. Ollefs, A. Rogalev, and A. Ney, X-ray absorption spectroscopy in electrical fields: An element-selective probe of atomic polarization, Phys. Rev. B 93, 035136 (2016). 1098-0121 10.1103/PhysRevB.93.035136
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1, 011002 (2013). 2166-532X 10.1063/1.4812323
S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations, Comput. Mater. Sci. 58, 227 (2012). CMMSEM 0927-0256 10.1016/j.commatsci.2012.02.002
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.