[en] The manuscript describes the observation of Martian mesosphericclouds between 60 and 80 km altitude by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’sMAVEN spacecraft. The cloud observations are uniquely obtained at early morning local times, whichcomplement previous observations obtained primarily later in the diurnal cycle. Differences in thegeographic distribution of the clouds from IUVS observations indicate that the local time is crucial for theinterpretation of mesospheric cloud formation. We also report concurrent observations of upperatmospheric scale heights near 170 km altitude, which are diagnostic of temperature. These observationssuggest that the dynamics enabling the formation of mesospheric clouds propagate all the way to theupper atmosphere.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Stevens
Siskind
Evans
Jain
Schneider
Deighan
Stewart
Crismani
Stiepen, Arnaud ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bailey, S. M., A. W. Merkel, G. E. Thomas, and J. N. Carstens (2005), Observations of polar mesospheric clouds by the Student Nitric Oxide Explorer, J. Geophys. Res., 110, D13203, doi:10.1029/2004JD005422.
Bougher, S. W., C. G. Fesen, E. C. Ridley, and R. W. Zurek (1993), Mars mesosphere and thermosphere coupling: Semidiurnal tides, J. Geophys. Res., 98, 3281–3295.
Bougher, S. W., et al. (2017), The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures, J. Geophys. Res. Space Physics, 122, 1296–1313, doi:10.1002/2016JA023454.
Clancy, R. T., and B. J. Sandor (1998), CO2 ice clouds in the upper atmosphere of Mars, Geophys. Res. Lett., 25, 489–492.
Clancy, R. T., M. J. Wolff, B. A. Whitney, B. A. Cantor, and M. D. Smith (2007), Mars equatorial mesospheric clouds: Global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars orbiter camera limb observations, J. Geophys. Res., 112, E04004, doi:10.1029/2006JE002805.
England, S. L., et al. (2016), Simultaneous observations of atmospheric tides from combined in situ and remote observations at Mars from the MAVEN spacecraft, J. Geophys. Res. Planets, 121, 594–607, doi:10.1002/2016JE004997.
Evans, J. S., et al. (2015), Retrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN, Geophys. Res. Lett., 42, 9040–9049, doi:10.1002/2015GL065489.
Forbes, J. M., et al. (2002), Nonmigrating tides in the thermosphere of Mars, J. Geophys. Res., 107(E11), 5113, doi:10.1029/2001JE001582.
González-Galindo, F., A. Määttänen, F. Forget, and A. Spiga (2011), The Martian mesosphere as revealed by CO2 cloud observations and general circulation modeling, Icarus, 216, 10–22.
Jain, S. K., et al. (2015), The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations, Geophys. Res. Lett., 42, 9023–9030, doi:10.1002/2015GL065419.
Jakosky, B. M., et al. (2015), The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, Space Sci. Rev., 195, 3–48, doi:10.1007/s11214-015-0139-x.
Kleinböhl, A., et al. (2009), Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity, J. Geophys. Res., 114, E10006, doi:10.1029/2009JE003358.
Kleinböhl, A., R. J. Wilson, D. Kass, J. T. Schofield, and D. J. McCleese (2013), The semidiurnal tide in the middle atmosphere of Mars, Geophys. Res. Lett., 40, 1952–1959, doi:10.1002/grl.50497.
Liu, G., S. England, R. J. Lillis, P. R. Mahaffy, M. Elrod, M. Benna, and B. Jakosky (2017), Longitudinal structures in Mars' upper atmosphere as observed by MAVEN/NGIMS, J. Geophys. Res. Space Physics, 122, 1258–1268, doi:10.1002/2016JA023455.
Lo, D. Y., et al. (2015), Nonmigrating tides in the Martian atmosphere as observed by MAVEN IUVS, Geophys. Res. Lett., 42, 9057–9063, doi:10.1002/2015GL066268.
Määttänen, A., et al. (2010), Mapping the mesospheric CO2 clouds on Mars: Mex/OMEGA and Mex/HRSC observations and challenges for atmospheric models, Icarus, 209, 452–469.
Määttänen, A., et al. (2013a), A complete climatology of the aerosol vertical distribution on Mars from Mex/SPICAM UV solar occultations, Icarus, 223, 892–941.
Määttänen, A., K. Perot, F. Montmessin and A. Hauchecorne (2013b), Mesospheric clouds on Mars and on Earth, in Comparative Climatology of Terrestrial Planets, edited by S. J. Mackwell et al., pp. 393–413, Univ. of Arizona, Tucson, doi:10.2458/azu_uapress_9780816530595-ch16.
McCleese, D. J., et al. (2007), Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions, J. Geophys. Res., 112, E05506, doi:10.1029/2006JE002790.
McClintock, W. E., et al. (2015), The imaging ultraviolet Spectrograph (IUVS) for the MAVEN mission, Space Sci. Rev., 195, 75–124, doi:10.1007/s11214-014-0098-7.
McConnochie, T. H., et al. (2010), THEMIS-VIS observations of clouds in the Martian mesosphere: Altitudes, wind speeds, and decameter-scale morphology, Icarus, 210, 545–565.
Medvedev, A. S., et al. (2016), Comparison of the Martian thermospheric density and temperature from IUVS/MAVEN data and general circulation modeling, Geophys. Res. Lett., 43, doi:10.1002/2016GL068388.
Meyers, C. H., and M. S. Van Dusen (1933), The vapor pressure of liquid and solid carbon dioxide, Bureau of Standards J. Res., 10, 381–412.
Montmessin, F., et al. (2006), Stellar occultations at UV wavelengths by the SPICAM instrument: Retrieval and analysis of Martian haze profiles, J. Geophys. Res., 111, E09S09, doi:10.1029/2005JE002662.
Montmessin, F., et al. (2007), Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars, J. Geophys. Res., 112, E11S90, doi:10.1029/2007JE002944.
Moudden, Y., and J. M. Forbes (2014), Insight into the seasonal asymmetry of nonmigrating tides on Mars, Geophys. Res. Lett., 41, 2631–2636, doi:10.1002/2014GL059535.
Petelina, S. V., E. J. Llewellyn, D. A. Degenstein, and N. D. Lloyd (2006), Odin/OSIRIS limb observations of polar mesospheric clouds in 2001–2003, J. Atmos. Sol. Terr. Phys., 68, 42–55.
Rannou, P., S. Perrier, J.-L. Bertaux, F. Montmessin, O. Korablev, and A. Rébérac (2006), Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM, J. Geophys. Res., 111, E09S10, doi:10.1029/2006JE002693.
Robert, C. E., C. von Savigny, J. P. Burrows, and G. Baumgarten (2009), Climatology of noctilucent cloud radii and occurrence frequency using SCIAMACHY, J. Atmos. Sol. Terr. Phys., 71, 408–423.
Schneider, N. M., et al. (2015a), MAVEN IUVS observations of the aftermath of the comet siding spring meteor shower on Mars, Geophys. Res. Lett., 42, 4755–4761, doi:10.1002/2015GL063863.
Schneider, N. M., et al. (2015b), Discovery of diffuse aurora on Mars, Science, 350, aad0313.
Schofield, J. T., et al. (1997), The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment, Science, 278, 1752–1757.
Scholten, F., et al. (2010), Concatenation of HRSC colour and OMEGA data for the determination and 3D-parameterization of high-altitude CO2 clouds in the Martian atmosphere, Planet. Space Sci., 58, 1207–1214.
Sefton-Nash, E., et al. (2013), Climatology and first-order composition estimates of mesospheric clouds from Mars Climate Sounder limb spectra, Icarus, 22, 342–356.
Spiga, A., F. González-Galindo, M.-Á. López-Valverde, and F. Forget (2012), Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere, Geophys. Res. Lett., 39, L02201, doi:10.1029/2011GL050343.
Stevens, M. H., et al. (2009), The diurnal variation of polar mesospheric cloud frequency near 55°N observed by SHIMMER, J. Atmos. Sol. Terr. Phys., 71, 401–407.
Stevens, M. H., et al. (2015), New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN, Geophys. Res. Lett., 42, 9050–9056, doi:10.1002/2015GL065319.
Thomas, G. E., and J. J. Olivero (1989), Climatology of polar mesospheric clouds 2. Further analysis of solar mesosphere Explorer data, J. Geophys. Res., 94, 14,693–14,681.
Vincendon, M., C. Pilorget, B. Gondet, S. Murchie, and J.-P. Bibring (2011), New near-IR observations of mesospheric CO2 and H2O clouds on Mars, J. Geophys. Res., 116, E00J02, doi:10.1029/2011JE003827.
Withers, P., S. W. Bougher, and G. M. Keating (2003), The effects of topographically-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer, Icarus, 164, 14–32.
Yiğit, E., A. S. Medvedev, and P. Hartogh (2015), Gravity waves and high-altitude CO2 ice cloud formation in the Martian atmosphere, Geophys. Res. Lett., 42, 4294–4300, doi:10.1002/2015GL064275.
Zurek, R. W., and S. E. Smrekar (2007), An overview of the Mars Reconnaissance Orbiter (MRO) science mission, J. Geophys. Res., 112, E05501, doi:10.1029/2006JE002701.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.