Auroral phenomena; Solar wind/magnetosphere interactions; Aurorae; Magnetospheres; Jupiter; Juno; Hubble Space Telescope; Aurora; Magnetosphere; Solar Wind
Abstract :
[en] We present the first comparison of Jupiter's auroral morphology with an extended, continuous and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the interplanetary conditions. We show that for ∼1-3 days following compression region onset the planet's main emission brightened. A duskside poleward region also brightened during compressions, as well as during shallow rarefaction conditions at the start of the program. The power emitted from the noon active region did not exhibit dependence on any interplanetary parameter, though the morphology typically differed between rarefactions and compressions. The auroras equatorward of the main emission brightened over ∼10 days following an interval of increased volcanic activity on Io. These results show that the dependence of Jupiter's magnetosphere and auroras on the interplanetary conditions are more diverse than previously thought.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Nichols, J. D.
Badman, S. V.
Bagenal, F.
Bolton, S. J.
Bonfond, Bertrand ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Bunce, E. J.
Clarke, J. T.
Connerney, J. E. P.
Cowley, S. W. H.
Ebert, R. W.
Fujimoto, M.
Gérard, Jean-Claude ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Gladstone, G. R.
Grodent, Denis ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Kimura, T.
Kurth, W. S.
Mauk, B. H.
Murakami, G.
McComas, D. J.
Orton, G. S.
Radioti, Aikaterini ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Badman, S. V., and S. W. H. Cowley (2007), Significance of Dungey-cycle flows in Jupiter's and Saturn's magnetospheres, and their identification on closed equatorial field lines, Ann. Geophys., 25(4), 941–951.
Badman, S. V., et al. (2016), Weakening of Jupiter's main auroral emission during January 2014, Geophys. Res. Lett., 43, 988–997, doi:10.1002/2015GL067366.
Baron, R. L., T. Owen, J. E. P. Connerney, T. Satoh, and J. Harrington (1996), Solar wind control of Jupiter's H3+ auroras, Icarus, 120(2), 437–442, doi:10.1006/icar.1996.0063.
Bonfond, B., D. Grodent, J.-C. Gérard, T. S. Stallard, J. T. Clarke, M. Yoneda, A. Radioti, and J. Gustin (2012), Auroral evidence of Io's control over the magnetosphere of Jupiter, Geophys. Res. Lett., 39, L01105, doi:10.1029/2011GL050253.
Bonfond, B., D. Grodent, S. V. Badman, J.-C. Gérard, and A. Radioti (2016), Dynamics of the flares in the active polar region of Jupiter, Geophys. Res. Lett., 43, 11,963–11,970, doi:10.1002/2016GL071757.
Brice, N. M., and G. A. Ioannidis (1970), The magnetospheres of Jupiter and Earth, Icarus, 13(2), 173–183, doi:10.1016/0019-1035(70)90048-5.
Chané, E., J. Saur, R. Keppens, and S. Poedts (2017), How is the Jovian main auroral emission affected by the solar wind?, J. Geophys. Res. Space Physics, 122, 1960–1978, doi:10.1002/2016JA023318.
Clarke, J. T., D. Grodent, S. W. H. Cowley, E. J. Bunce, P. M. Zarka, J. E. P. Connerney, and T. Satoh (2004), Jupiter's aurora, in Jupiter. The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 639–670, Cambridge Univ. Press, Cambridge, U. K.
Clarke, J. T., et al. (2009), Response of Jupiter's and Saturn's auroral activity to the solar wind, J. Geophys. Res., 114, A05210, doi:10.1029/2008JA013694.
Connerney, J. E. P., M. H. Acuña, and N. F. Ness (1981), Modeling the Jovian current sheet and inner magnetosphere, J. Geophys. Res., 86, 8370–8384.
Connerney, J. E. P., M. H. Acuña, N. F. Ness, and T. Satoh (1998), New models of Jupiter's magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 103(A6), 11,929–11,940, doi:10.1029/97JA03726.
Connerney, J. E. P., et al. (2017), The Juno magnetic field investigation, Space Sci. Rev., doi:10.1007/s11214-017-0334-z.
Cowley, S. W. H., J. D. Nichols, and D. J. Andrews (2007), Modulation of Jupiter's plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: A simple theoretical model, Ann. Geophys., 25, 1433–1463.
Cowley, S. W. H., S. V. Badman, S. M. Imber, and S. E. Milan (2008), Comment on “Jupiter: A fundamentally different magnetospheric interaction with the solar wind” by D. J. McComas and F. Bagenal, Geophys. Res. Lett., 35, L10101, doi:10.1029/2007GL032645.
Delamere, P. A., and F. Bagenal (2010), Solar wind interaction with Jupiter's magnetosphere, J. Geophys. Res., 115, A10201, doi:10.1029/2010JA015347.
Dumont, M., D. Grodent, A. Radioti, B. Bonfond, and J.-C. Gérard (2015), Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections, J. Geophys. Res. Space Physics, 119, 10,068–10,077, doi:10.1002/2014JA020527.
Dunn, W. R., et al. (2016), The impact of an ICME on the Jovian X-ray aurora, J. Geophys. Res. Space Physics, 121, 2274–2307, doi:10.1002/2015JA021888.
Gray, R. L., S. V. Badman, and B. Bonfond (2016), Auroral evidence of radial transport at Jupiter during January 2014, J. Geophys. Res. Space Physics, 121, 9972–9984, doi:10.1002/2016JA023007.
Grodent, D., J. T. Clarke, J. H. Waite Jr., S. W. H. Cowley, J.-C. Gérard, and J. Kim (2003), Jupiter's polar auroral emissions, J. Geophys. Res., 108(A10), 1366, doi:10.1029/2003JA010017.
Grodent, D., J.-C. Gérard, J. T. Clarke, G. R. Gladstone, and J. H. Waite Jr. (2004), A possible auroral signature of a magnetotail reconnection process on Jupiter, J. Geophys. Res., 109, A05201, doi:10.1029/2003JA010341.
Gustin, J., B. Bonfond, D. Grodent, and J.-C. Gérard (2012), Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets, J. Geophys. Res., 117, A07316, doi:10.1029/2012JA017607.
Joy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, and T. Ogino (2002), Probabilistic models of the Jovian magnetopause and bow shock locations, J. Geophys. Res., 107(A10), 1309, doi:10.1029/2001JA009146.
Khurana, K. K., M. G. Kivelson, V. M. Vasyliūnas, N. Krupp, J. Woch, A. Lagg, B. H. Mauk, and W. S. Kurth (2004), The configuration of Jupiter's magnetosphere, in Jupiter. The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 593–616, Cambridge Univ. Press, Cambridge, U. K.
Kimura, T., et al. (2016), Jupiter's X-ray and EUV auroras monitored by Chandra, XMM-Newton, and Hisaki satellite, J. Geophys. Res. Space Physics, 121, 2308–2320, doi:10.1002/2015JA021893.
Kimura, T., et al. (2017), Auroral explosion at Jupiter observed by the Hisaki satellite and Hubble Space, Geophys. Res. Lett., 44, 4523–4531, doi:10.1002/2017GL072912.
Kita, H., et al. (2016), Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere?, Geophys. Res. Lett., 43, 6790–6798, doi:10.1002/2016GL069481.
Louarn, P., C. P. Paranicas, and W. S. Kurth (2014), Global magnetodisk disturbances and energetic particle injections at Jupiter, J. Geophys. Res. Space Physics, 119, 4495–4511, doi:10.1002/2014JA019846.
Mauk, B. H., D. J. Williams, R. W. McEntire, K. K. Khurana, and J. G. Roederer (1999), Storm-like dynamics of Jupiter's inner and middle magnetosphere, J. Geophys. Res., 104(A10), 22,759–22,778, doi:10.1029/1999JA900097.
McComas, D. J., and F. Bagenal (2007), Jupiter: A fundamentally different magnetospheric interaction with the solar wind, Geophys. Res. Lett., 34, L20106, doi:10.1029/2007GL031078.
McComas, D. J., et al. (2013), The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter, Space Sci. Rev., doi:10.1007/s11214-013-9990-9.
McComas, D. J., et al. (2017), Plasma environment at the dawn flank of Jupiter's magnetosphere: Juno arrives at Jupiter, Geophys. Res. Lett., 44, 4432–4438, doi:10.1002/2017GL072831.
Nichols, J. D., S. W. H. Cowley, and D. J. McComas (2006), Magnetopause reconnection rate estimates for Jupiter's magnetosphere based on interplanetary measurements at ∼5 AU, Ann. Geophys., 24, 393–406.
Nichols, J. D., E. J. Bunce, J. T. Clarke, S. W. H. Cowley, J.-C. Gérard, D. Grodent, and W. R. Pryor (2007), Response of Jupiter's UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign, J. Geophys. Res., 112, A02203, doi:10.1029/2006JA012005.
Nichols, J. D., J. T. Clarke, J.-C. Gérard, D. Grodent, and K. C. Hansen (2009a), Variation of different components of Jupiter's auroral emission, J. Geophys. Res., 114, A06210, doi:10.1029/2009JA014051.
Nichols, J. D., J. T. Clarke, J.-C. Gérard, and D. Grodent (2009b), Observations of Jovian polar auroral filaments, Geophys. Res. Lett., 36, L08101, doi:10.1029/2009GL037578.
Pallier, L., and R. Prangé (2001), More about the structure of the high latitude Jovian aurorae, Planet. Space Sci., 49(10–11), 1159–1173, doi:10.1016/s0032-0633(01)00023-x.
Pryor, W. R., et al. (2005), Cassini UVIS observations of Jupiter's auroral variability, Icarus, 178(2), 312–326, doi:10.1016/j.icarus.2005.05.021.
Radioti, A., A. T. Tomas, D. Grodent, J.-C. Gérard, J. Gustin, B. Bonfond, N. Krupp, J. Woch, and J. D. Menietti (2009), Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations, Geophys. Res. Lett., 36, L07101, doi:10.1029/2009GL037857.
Southwood, D. J., and M. G. Kivelson (2001), A new perspective concerning the influence of the solar wind on the Jovian magnetosphere, J. Geophys. Res., 106(A4), 6123–6130, doi:10.1029/2000JA000236.
Stallard, T. S., J. T. Clarke, H. Melin, S. Miller, J. D. Nichols, J. O'Donoghue, R. E. Johnson, J. E. P. Connerney, T. Satoh, and M. Perry (2016), Stability within Jupiter's polar auroral 'Swirl region' over moderate timescales, Icarus, 268, 145–155, doi:10.1016/j.icarus.2015.12.044.
Tao, C., T. Kimura, S. V. Badman, N. Andre, F. Tsuchiya, G. Murakami, K. Yoshioka, I. Yoshikawa, A. Yamazaki, and M. Fujimoto (2016), Variation of Jupiter's aurora observed by Hisaki/EXCEED: 2. Estimations of auroral parameters and magnetospheric dynamics, J. Geophys. Res. Space Physics, 121, 4055–4071, doi:10.1002/2015JA021272.
Yoneda, M., H. Nozawa, H. Misawa, M. Kagitani, and S. Okano (2010), Jupiter's magnetospheric change by Io's volcanoes, Geophys. Res. Lett., 37, L11202, doi:10.1029/2010GL043656.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.