[en] We measured the flux of CO2 across the air–water interface using the floating chamber method in three European estuaries with contrasting physical characteristics (Randers Fjord, Scheldt, and Thames). We computed the gas transfer velocity of CO2 (k) from the CO2 flux and concomitant measurements of the air–water gradient of the partial pressure of CO2 (pCO2). There was a significant linear relationship between k and wind speed for each of the three estuaries. The differences of the y-intercept and the slope between the three sites are related to differences in the contribution of tidal currents to water turbulence at the interface and fetch limitation. The contribution to k from turbulence generated by tidal currents is negligible in microtidal estuaries such as Randers Fjord but is substantial, at low to moderate wind speeds, in macrotidal estuaries such as the Scheldt and the Thames. Our results clearly show that in estuaries a simple parameterization of k as a function of wind speed is site specific and strongly suggest that the y-intercept of the linear relationship is mostly influenced by the contribution of tidal currents, whereas the slope is influenced by fetch limitation. This implies that substantial errors in flux computations are incurred if generic relationships of the gas transfer velocity as a function of wind speed are employed in estuarine environments for the purpose of biogas air–water flux budgets and ecosystem metabolic studies.
BAKKER, D. C. E., H. J. W. DE BAAR, AND H. P. J. DE WILDE. 1996. Dissolved carbon dioxide in Dutch coastal waters. Mar. Chem. 55: 247-263.
BANSAL, M. K. 1973. Atmospheric reaeration in natural streams. Water Res. 7: 769-782.
BELANGER, T. V., AND E. A. KORZUM. 1991. Critique of floating-dome technique for estimating reaeration rates. J. Environ. Eng. 117: 144-150.
BORGES, A. V., AND M. FRANKIGNOULLE. 2001. Short-term variations of the partial pressure of CO2 in surface waters of the Galician upwelling system. Prog. Oceanogr. 51: 283-302.
_, AND _. 2002a. Distribution of surface carbon dioxide and air-sea exchange in the upwelling system off the Galician coast. Glob. Biogeochem. Cycles 16: 1-14.
_, AND _. 2002b. Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast. Biogeochemistry 59: 41-67.
BROECKER, H. C., AND W. SIEMS. 1984. The role of bubbles for gas transfer from water to air at higher wind speeds: Experiments in wind-wave facility in Hamburg, p. 229-238. In W. Brutsaert and G. H. Jirka [eds.], Gas transfer at water surfaces. Reidel.
BROECKER, W. S., J. R. LEDWELL, T. TAKAHASHI, L. M. R. WEISS, L. MEMERY, T.-H. PENG, B. JÄHNE, AND K. O. MÜNNICH. 1986. Isotopic versus micrometeorologic ocean CO2 fluxes: A serious conflict. J. Geophys. Res. 91: 10517-10527.
CAI, W.-J., Z. H. A. WANG, AND Y. C. WANG. 2003. The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean. Geophys. Res. Lett. 30: 1849, doi:10.1029/2003GL017633
_, W. J. WIEBE, Y. WANG, AND J. E. SHELDOM. 2000. Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S. Limnol. Oceanogr. 45: 1743-1752.
CARINI, S., N. WESTON, C. HOPKINSON, J. TUCKER, A. GIBLIN, AND J. VALLINO. 1996. Gas exchange rates in the Parker River estuary, Massachusetts. Biol. Bull. 191: 333-334.
CERCO, C. F. 1989. Estimating estuarine reaeration rates. J. Environ. Eng. 115: 1066-1070.
COLE, J. J., AND N. F. CARACO. 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF 6. Limnol. Oceanogr. 43: 647-656.
DEGRANPRE, M. D., G. J. OLBU, C. M. BEATTY, AND T. R. HAMMAR. 2002. Air-sea fluxes on the US Middle Atlantic Bight. Deep-Sea Res. II 49: 4355-4367.
FAIRALL, C. W., J. E. HARE, J. B. EDSON, AND W. MCGILLIS. 2000. Parameterization and micrometeorological measurement of air-sea gas transfer. Boundary-Layer Meteorol. 96: 63-105.
FRANKIGNOULLE, M. 1988. Field measurements of air-sea CO2 exchange. Limnol. Oceanogr. 33: 313-322.
_, G. ABRIL, A. BORGES, I. BOURGE, C. CANON, B. DELILLE, E. LIBERT, AND J.-M. THÉATE. 1998. Carbon dioxide emission from European estuaries. Science 282: 434-436.
_, R. BIONDO, J.-M. THÉATE, AND A. V. BORGES. 2003. Carbon dioxide daily variations and atmospheric fluxes over the open waters of the Great Bahama Bank and Norman's Pond using a novel autonomous measuring system. Caribb. J. Sci. 39: 257-264.
_, AND A. V. BORGES. 2001a. European continental shelf as a significant sink for atmospheric CO2. Glob. Biogeochem. Cycles 15: 569-576.
_, AND _. 2001b. Direct and indirect pCO2 measurements in a wide range of pCO2 and salinity values (The Scheldt Estuary). Aquat. Geochem. 7: 267-273.
_, _, AND R. BIONDO. 2001. A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Res. 35: 1344-1347.
_, J.-P. GATTUSO, R. BIONDO, I. BOURGE, G. COPIN-MONTÉGUT, AND M. PICHON. 1996. Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges. Mar. Ecol. Prog. Ser. 145: 123-132.
GATTUSO, J.-P., M. FRANKIGNOULLE, AND R. WOLLAST. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst. 29: 405-433.
GUALTIERI, C., P. GUALTIERI, AND G. P. DORIA. 2002. Dimensional analysis of reaeration rate in streams. J. Environ. Eng. 128: 12-18.
HARTMAN, B., AND D. H. HAMMOND. 1984. Gas exchange across the sediment-water and air-water interfaces in south San Francisco Bay. J. Geophys. Res. 89: 3593-3603.
_, AND _. 1985. Gas exchange in San Francisco Bay. Hydrobiologia 129: 59-68.
JACOBS, C. M. J., W. KOHSIEK, AND W. A. OOOST. 1999. Air-sea fluxes and transfer velocity of CO2 over the North Sea: Results from ASGAMAGE. Tellus 51B: 629-641.
KREMER, J. N., A. REISCHAUER, AND C. D'AVANZO. 2003a. Estuary-specific variation in the air-water gas exchange coefficient for oxygen. Estuaries 26: 829-836.
_, S. W. NIXON, B. BUCKLEY, AND P. ROQUES. 2003b. Technical note: Conditions for using the floating chamber method to estimate air-water gas exchange. Estuaries 26: 985-990.
LISS, P. S., AND L. MERLIVAT. 1986. Air-sea exchange rates: introduction and synthesis, p. 113-127. In P. Buat-Ménard [ed.], The role of air-sea exchange in geochemical cycling. Reidel.
MARINO, R., AND R. W. HOWARTH. 1993. Atmospheric oxygen exchange in the Hudson river: Dome measurements and comparison with other natural waters. Estuaries 16: 433-445.
MATTHEWS, C. J. D., V. L. ST. LOUIS, AND R. H. HESSLEIN. 2003. Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environ. Sci. Technol. 37: 772-780.
MCGILLIS, W. R., J. B. EDSON, J. D. WARE, J. W. H. DACEY, J. E. HARE, C. W. FAIRALL, AND R. WANNINKHOF. 2001. Carbon dioxide flux techniques performed during GasEx-98. Mar. Chem. 75: 267-280.
MELCHING, C. S., AND H. E. FLORES. 1999. Reaeration equations derived from U.S. Geological Survey Database. J. Environ. Eng. 125: 407-414.
NIGHTINGALE, P. D., G. MALIN, C. S. LAW, A. J. WATSON, P. S. LISS, M. I. LIDDICOAT, J. BOUTIN, AND R. C. UPSTILL-GODDARD. 2000. In situ evaluation of air-sea exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14: 373-387.
O'CONNOR, D. J., AND W. E. DOBBINS. 1958. Mechanism of reaeration in natural streams. Trans. Am. Soc. Civ. Eng. 123: 641-684.
RAYMOND, P. A., J. E. BAUER, AND J. J. COLE. 2000. Atmospheric CO 2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnol. Oceanogr. 45: 1707-1717.
_, AND J. J. COLE. 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries 24: 312-317.
SMITH, S. D. 1988. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res. 93: 15467-15472.
SMITH, S. V., AND G. S. KEY. 1975. Carbon dioxide and metabolism in marine environments. Limnol. Oceanogr. 20: 493-495.
_, AND F. T. MACKENZIE. 1987. The ocean as a net heterotrophic system: Implications from the carbon biogeochemical cycle. Glob. Biogeochem. Cycles 1: 187-198.
TSUNOGAI, S., S. WATANABE, AND T. SATO. 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO 2? Tellus 51B: 701-712.
WANNINKHOF, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97: 7373-7382.
_, AND L. BLIVEN. 1991. Relationship between gas exchange, wind speed and radar backscatter in large wind-wave tank. J. Geophys. Res. 96: 2785-2796.
_, AND W. R. MCGILLIS. 1999. A cubic relationship between air-sea CO 2 exchange and wind speed. Geophys. Res. Lett. 26: 1889-1892.
WEISS, R. F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 2: 203-215.
ZAPPA, C. J., P. A. RAYMOND, E. A. TERRAY, AND W. R. MCGILLIS. 2003. Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26: 1401-1415.