[en] The ability to address the CRISPR-Cas9 nuclease complex to any target DNA using customizable
single-guide RNAs has now permitted genome engineering in many species. Here, we report its
first successful use in a nonvascular plant, the moss Physcomitrella patens. Single-guide RNAs
(sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation
confers resistance to 2-fluoroadenine. Transformation of moss protoplasts with these sgRNAs
and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the
PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of
them resulting from alternative end-joining (alt-EJ)-driven repair. We further demonstrate that, in
the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene
integration events occur by homology-driven repair (HDR) at the target locus but also that Cas9-
induced double-strand breaks are repaired with almost equal frequencies by mutagenic
illegitimate recombination. Finally, we establish that a significant fraction of HDR-mediated gene
targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that
CRISPR-induced HDR is only partially mediated by the classical homologous recombination
pathway.
Disciplines :
Biotechnology
Author, co-author :
Collonnier, Cécile; INRA Centre de Versailles-Grignon, Versailles Cedex, France > Institut Jean-Pierre Bourgin (UMR1318) > Méiose et Recombinaison
Epert, Aline; INRA Centre de Versailles-Grignon, Versailles Cedex, France > Institut Jean-Pierre Bourgin > Méiose et Recombinaison
Mara, Kostlend; INRA Centre de Versailles-Grignon, Versailles Cedex, France > Institut Jean-Pierre Bourgin (UMR1318) > Méiose et Recombinaison
Maclot, François ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Gestion durable des bio-agresseurs
Guyon-Debast, Anouchkla; INRA Centre de Versailles-Grignon, Versailles Cedex, France > Institut Jean-Pierre Bourgin (UMR1318) > Méiose et Recombinaison
Charlot, Florence; INRA Centre de Versailles-Grignon, Versailles Cedex, France > Institut Jean-Pierre Bourgin (UMR1318) > Méiose et Recombinaison
White, Charles; Institut Blaise Pascal, Clermont Ferran, France > Génétique, Reproduction et Développement, UMR CNRS 6293
Schaefer, Didier G.; Université de Neuchâtel, Neuchâtel, Suisse > Institut de Biologie > Laboratoire de Biologie Moléculaire et Cellulaire
Nogué, Fabien; INRA Centre de Versailles-Grignon, Versailles Cedex, France > Institut Jean-Pierre Bourgin (UMR1318) > Méiose et Recombinaison
Language :
English
Title :
CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens
Ashton, N.W. and Cove, D.J. (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol. Gen. Genet. 154, 87–95.
Ashton, N.W., Grimsley, N.H. and Cove, D.J. (1979) Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta, 144, 427–435.
Bilang, R., Iida, S., Peterhans, A., Potrykus, I. and Paszkowski, J. (1991) The 3′-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum. Gene, 100, 247–250.
Bonhomme, S., Nogué, F., Rameau, C. and Schaefer, D.G. (2013) Usefulness of Physcomitrella patens for studying plant organogenesis. Methods Mol. Biol. 959, 21–43.
Ceccaldi, R., Rondinelli, B. and Andrea, A.D.D. (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64.
Čermák, T., Baltes, N.J., Čegan, R., Zhang, Y. and Voytas, D.F. (2015) High-frequency, precise modification of the tomato genome. Genome Biol. 16, 232.
Charlot, F., Chelysheva, L., Kamisugi, Y., Vrielynck, N., Guyon, A., Epert, A., Le Guin, S., et al. (2014) RAD51B plays an essentialrole during somatic and meiotic recombination in Physcomitrella. NucleicAcids Res. 42, 11965-11978.
Collonnier, C., Nogué, F. and Casacuberta, J.M. (2016) Targeted genetic modification in crops using site-directed nucleases. In Genetically Modified Organisms in Food (Watson, R.R. and Preedy, V.R., eds), pp. 133–145. London: Elsevier.
D’Halluin, K., Vanderstraeten, C., Van Hulle, J. et al. (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol. J. 11, 933–941.
Dicarlo, J.E., Norville, J.E., Mali, P., Rios, X., Aach, J. and Church, G.M. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343.
Feng, Z., Mao, Y., Xu, N. et al. (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl Acad. Sci. USA, 111, 4632–4637.
Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K. and Sander, J.D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826.
Gasiunas, G., Barrangou, R., Horvath, P. and Siksnys, V. (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA, 109, E2579–E2586.
Hanin, M. and Paszkowski, J. (2003) Plant genome modification by homologous recombination. Curr. Opin. Plant Biol. 6, 157–162.
Holthausen, J.T., Wyman, C. and Kanaar, R. (2010) Regulation of DNA strand exchange in homologous recombination. DNA Repair (Amst.) 9, 1264–1272.
Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C. and Schmid, B. (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development, 140, 4982–4987.
Kamisugi, Y., Schlink, K., Rensing, S.A., Schween, G., von Stackelberg, M., Cuming, A.C., Reski, R. et al. (2006) The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res. 34, 6205–6214.
Kamisugi, Y., Schaefer, D.G., Kozak, J., Charlot, F., Vrielynck, N., Holá, M., Angelis, K.J. et al. (2012) MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens. Nucleic Acids Res. 40, 3496–3510.
Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523, 481–485.
Kofuji, R. and Hasebe, M. (2014) Eight types of stem cells in the life cycle of the moss Physcomitrella patens. Curr. Opin. Plant Biol. 17, 13–21.
Lander, E.S. (2016) The Heroes of CRISPR. Cell, 164, 18–28.
Li, X., Jiang, D.H., Yong, K. and Zhang, D.B. (2007) Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. J. Integr. Plant Biol. 49, 222–229.
Li, J.-F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M. et al. (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688–691.
Mali, P., Esvelt, K.M. and Church, G.M. (2013) Cas9 as a versatile tool for engineering biology. Nat. Methods, 10, 957–963.
McElroy, D., Blowers, A.D., Jenes, B. and Wu, R. (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol. Gen. Genet. 231, 150–160.
Nishizawa-Yokoi, A., Endo, M., Ohtsuki, N., Saika, H. and Toki, S. (2015) Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision. Plant J. 81, 160–168.
Pâques, F. and Haber, J.E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404.
Petolino, J.F., Srivastava, V. and Daniell, H. (2016) Editing Plant Genomes: a new era of crop improvement. Plant Biotechnol. J. 14, 435–436.
Prigge, M.J. and Bezanilla, M. (2010) Evolutionary crossroads in developmental biology: Physcomitrella patens. Development, 137, 3535–3543.
Proust, H., Hoffmann, B., Xie, X., Yoneyama, K., Schaefer, D.G., Yoneyama, K., Nogué, F. et al. (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development, 138, 1531–1539.
Puchta, H. (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56, 1–14.
Reski, R., Parsons, J. and Decker, E.L. (2015) Moss-made pharmaceuticals: from bench to bedside. Plant Biotechnol. J. 13, 1191–1198.
Schaefer, D.G. (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu. Rev. Plant Biol. 53, 477–501.
Schaefer, D.G. and Zrÿd, J.P. (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11, 1195–1206.
Schaefer, D. and Zrÿd, J.-P. (2004) Principles of targeted mutagenesis in the moss Physcomitrella patens. In New Frontiers in Bryology (Wood, A.J., Oliver, M.J. and Cove, D.J., eds), pp. 37–49. Dordrecht: Springer Netherlands.
Schaefer, D.G., Delacote, F., Charlot, F., Vrielynck, N., Guyon-Debast, A., Le Guin, S., Neuhaus, J.M. et al. (2010) RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens. DNA Repair (Amst.) 9, 526–533.
Schaeffer, S.M. and Nakata, P.A. (2015) CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci. 240, 130–142.
Schiestl, R.H., Zhu, J. and Petes, T.D. (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 4493–4500.
Schiml, S. and Puchta, H. (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods, 12, 8.
Schiml, S., Fauser, F. and Puchta, H. (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 9, 1139–1150.
Shukla, V.K., Doyon, Y., Miller, J.C. et al. (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 459, 437–441.
Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X. and Zhang, F. (2015) Rationally engineered Cas9 nucleases with improved specificity. Science, 351, 84–88.
Symington, L.S. (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66, 630–670.
Townsend, J.A., Wright, D.A., Winfrey, R.J., Fu, F., Maeder, M.L., Joung, J.K. and Voytas, D.F. (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 459, 442–445.
Trouiller, B., Schaefer, D.G., Charlot, F. and Nogué, F. (2006) MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens. Nucleic Acids Res. 34, 232–242.
Trouiller, B., Charlot, F., Choinard, S., Schaefer, D.G. and Nogué, F. (2007) Comparison of gene targeting efficiencies in two mosses suggests that it is a conserved feature of Bryophyte transformation. Biotechnol. Lett. 29, 1591–1598.
Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F. and Jaenisch, R. (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153, 910–918.
Wendeler, E., Zobell, O., Chrost, B. and Reiss, B. (2015) Recombination products suggest the frequent occurrence of aberrant gene replacement in the moss Physcomitrella patens. Plant J. 81, 548–558.
Xie, K. and Yang, Y. (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant, 6, 1975–1983.