Atmospheres; Origin and evolution; Remote sensing; mars; atmosphere; escape
Abstract :
[en] The MAVEN IUVS instrument contains an echelle spectrograph channel designed to measure D and H Ly α emissions from the upper atmosphere of Mars. This channel has successfully recorded both emissions, which are produced by resonant scattering of solar emission, over the course of most of a martian year. The fundamental purpose of these measurements is to understand the physical principles underlying the escape of H and D from the upper atmosphere into space, and thereby to relate present-day measurements of an enhanced HDO/H2O ratio in the bulk atmosphere to the water escape history of Mars. Variations in these emissions independent of the solar flux reflect changes in the density and/or temperature of the species in the upper atmosphere. The MAVEN measurements show that the densities of both H and D vary by an order of magnitude over a martian year, and not always in synch with each other. This discovery has relevance to the processes by which H and D escape into space. One needs to understand the controlling factors to be able to extrapolate back in time to determine the water escape history from Mars at times when the atmosphere was thicker, when the solar flux and solar wind were stronger, etc. Further measurements will be able to identify the specific controlling factors for the large changes in H and D, which likely result in large changes in the escape fluxes of both species.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Clarke, J. T.
Mayyasi, M.
Bhattacharyya, D.
Schneider, N. M.
McClintock, W. E.
Deighan, J. I.
Stewart, A. I. F.
Chaufray, J.-Y.
Chaffin, M. S.
Jain, S. K.
Stiepen, Arnaud ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Anderson, D. E. (1974), Mariner 6, 7, and 9 Ultraviolet Spectrometer Experiment: Analysis of Hydrogen Lyman Alpha Data, J. Geophys. Res., 79, 1513–1518, doi:10.1029/JA079i010p01513.
Aoki, S., H. Nakagawa, H. Sagawa, M. Giruanna, G. Sindoni, A. Aronica, and Y. Kasaba (2015), Seasonal Variation of the HDO/H2O Ratio in the Atmosphere of Mars at the Middle of Northern Spring and Beginning of Northern Summer, Icarus, 260, 7–22, doi:10.1016/j.icarus.2015.06.021.
Bertaux, J. L., and F. Montmessin (2001), Isotopic Fractionation through Water Vapor Condensation: the Deuterophase, a Cold Trap for Deuterium in the Atmosphere of Mars, J. Geophys. Res., 106(E12), 32,879–32,994, doi:10.1029/2000JE001358.
Bertaux, J. L., J. T. Clarke, M. J. Mumma, T. Owen, and E. Quemerais (1993), A Search for the Deuterium Lyman-alpha Emission from the Atmosphere of Mars, in Science with the Hubble Space Telescope, ESO Proc. 44, pp. 459–462.
Bhattacharyya, D., J. T. Clarke, J.-L. Bertaux, J.-Y. Chaufray, and M. Mayyasi (2015), A Strong Seasonal Dependence in the Martian Hydrogen Exosphere, Geophys. Res. Lett., 42, 8678–8685, doi:10.1002/2015GL065804.
Bhattacharyya, D., J. T. Clarke, J.-L. Bertaux, J.-Y. Chaufray, and M. Mayyasi (2016), Analysis and Modeling of Remote Observations of the Martian Hydrogen Exosphere, Icarus, 281, 264–280, doi:10.1016/j.icarus.2016.08.034.
Bougher, S. W., D. Pawlowski, J. M. Bell, S. Nelli, T. McDunn, J. R. Murphy, M. Chizek, and A. Ridley (2015), Mars Global Ionosphere-Thermosphere Model: Solar Cycle, Seasonal, and Diurnal Variations of the Mars Upper Atmosphere, J. Geophys. Res. Planets, 120, 311–342, doi:10.1002/2014JE004715.
Chaffin, M., et al. (2015), Three Dimensional Structure in the Martian H Corona Revealed by IUVS on MAVEN, Geophys. Res. Lett., 42, 9001–9008, doi:10.1002/2015/GL065287.
Chaffin, M. S., J. Y. Chaufray, I. Stewart, F. Montmessin, N. M. Schneider, and J. L. Bertaux (2014), Unexpected Variability of Martian Hydrogen Escape, Geophys. Res. Lett., 41, 314–320, doi:10.1002/2013GL058578.
Chamberlain, J. W. (1963), Planetary Coronae and Atmospheric Evaporation, Planet. Space Sci., 11, 901–960, doi:10.1016/0032-0633(63)90122-3.
Chaufray, J. Y., F. Gonzalez-Galindo, F. Forget, M. A. Lopez-Valverde, F. LeBlanc, R. Modolo, and S. Hess (2015), Variability of the Hydrogen in the Martian Upper Atmosphere as Simulated by a 3D Atmosphere-Exosphere Coupling, Icarus, 245, 282–294, doi:10.1016/j.icarus.2014.08.038.
Chaufray, J.-Y., J.-L. Bertaux, F. Leblanc, and E. Quémerais (2008), Observation of the hydrogen corona with SPICAM on Mars Express, Icarus, 195, 598–613, doi:10.1016/j.icarus.2008.01.009.
Clarke, J. T., J.-L. Bertaux, J.-Y. Chaufray, T. Owen, A. Nagy, and G. R. Gladstone (2006), HST/STIS Observations of the D/H Ratio in the Martian Upper Atmosphere, Bull. Amer. Astr. Soc., 38, 600.
Clarke, J. T., J. L. Bertaux, J. Y. Chaufray, G. R. Gladstone, E. Quemerais, J. K. Wilson, and D. Bhattacharyya (2014), A Rapid Decrease of the Hydrogen Corona of Mars, Geophys. Res. Lett., 41, 8013–8020, doi:10.1002/2014GL061803.
Combi, M. R., M. E. Brown, P. D. Feldman, H. U. Keller, R. R. Meier, and W. H. Smyth (1996), A Comprehensive Study of the H Lyman-alpha Line Profile and Water Photochemistry in Comet Hyakutake (1996 B2), Bull. Amer. Astr. Soc., 28, 1094.
Elrod, M. K., S. Bougher, J. Bell, P. R. Mahaffy, M. Benna, S. Stone, R. Yelle, and B. Jakosky (2017), He Bulge Revealed: He and CO2 diurnal and seasonal variations in the Upper Atmosphere of Mars as detected by MAVEN NGIMS, J. Geophys. Res. Space Physics, 122, doi:10.1002/2016JA023482.
Emerich, C., P. Lemaire, J.-C. Vial, W. Curdt, U. Schühle, and K. Wilhelm (2005), A new relation between the central spectral solar H I Lyman α irradience and the line irradience measured by SUMER/SOHO during the cycle 23, Icarus, 178, 429–433, doi:10.1016/j.icarus.2005.05.002.
Encrenaz, T., et al. (2016), A Map of D/H on Mars in the Thermal Infrared using EXES aboard SOFIA, Astr. Astrph., 586, A62, doi:10.1051/0004-6361/201527018.
Eparvier, F., P. Chamberlin, T. N. Woods, and E. Thiemann (2015), The Solar Extreme Ultraviolet Monitor for MAVEN, Space Sci. Rev., 195, 293–301, doi:10.1007/s11214-015-0195-2.
Fedorova, A., O. Korablev, J.-L. Bertaux, A. V. Rodin, F. Montmessin, D. A. Belyaev, and A. Reberac (2009), Solar Infrared Occultation Observations by SPICAM Experiment on Mars-Express: Simultaneous Measurements of the Vertical Distributions of H2O, CO2, and Aerosol, Icarus, 200, 96–117, doi:10.1016/j.icarus.2008.11.006.
Fedorova, A., J.-L. Bertaux, F. Montmessin, O. Korablev, I. Dzuban, L. Maltagliati, and J. Clarke (2015), Water Vapor in the Middle Atmosphere of Mars During the Global Dust Storm in 2007, EGU General Assembly, Vienna, Austria, 12–17 April.
Harris, W. M., J. T. Clarke, J. R. Caldwell, P. D. Feldman, B. C. Bush, D. M. Cotton, and S. Chakrabarti (1993), High Resolution Ultraviolet Spectrograph for Sounding Rocket Measurements of Planetary Emission Line Profiles, Opt. Eng., 32, 3016, doi:10.1117/12.149165.
Hunten, D. M. (1973), The Escape of Light Gases from Planetary Atmospheres, J. Atmos. Sci., 30, 1481–1494, doi:10.1175/1520-0469(1973)030<1481:TEOLGF>2.0.CO;2.
Jakosky, B. M., et al. (2015), The Mars Atmosphere and Volatile Evolution (MAVEN) Mission, Space Sci. Rev., 195(1–4), 3–48, doi:10.1007/s11214-015-0139-x.
Krasnopolsky, V. A. (2015), Variations of the HDO/H2O Ratio in the Martian Atmosphere and Loss of Water from Mars, Icarus, 257, 377–386, doi:10.1016/j.icarus.2015.05.021.
Krasnopolsky, V. A., M. J. Mumma, and G. R. Gladstone (1998), Detection of Atomic Deuterium in the Upper Atmosphere of Mars, Science, 280, 1576–1580, doi:10.1126/science.280.5369.1576.
Lillis, R., et al. (2015), Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN, Sp. Sci. Rev., 195(357–422), 2015, doi:10.1007/s11214-015-0165-8.
Maltagliati, L., F. Montmessin, O. Korablev, A. Fedorova, F. Forget, A. Maattanen, F. Lefevre, and J.-L. Bertaux (2013), Annual Survey of Water Vapor Vertical Distribution and Water Aerosol Coupling in the Martian Atmosphere Observed by SPICAM/MEX Solar Occultations, Icarus, 223, 942–862, doi:10.1016/j.icarus.2012.12.012.
Mayyasi, M., et al. (2016), IUVS Echelle-Mode Observations of Interplanetary Hydrogen: Standard for Calibration and Reference for Cavity Variations between Earth and Mars during MAVEN Cruise, J. Geophys. Res. Space Physics, 122, doi:10.1002/2016JA023466.
McClintock, W. E., N. M. Schneider, G. M. Holsclaw, J. T. Clarke, A. C. Hoskins, I. Stewart, F. Montmessin, R. V. Yelle, and J. Deighan (2015), The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission, Space Sci. Rev., 195, 75–124, doi:10.1007/s11214-014-0098-7.
Montmessin, F., T. Fouchet, and F. Forget (2005), Modeling the Annual Cycle of HDO in the Martian Atmosphere, J. Geophys. Res., 110, E03006, doi:10.1029/2004JE002357.
Owen, T., J. P. Maillard, C. de Bergh, and B. Lutz (1988), Deuterium on Mars: The Abundance of HDO and the Value of D/H, Science, 240, 1767–1770, doi:10.1126/science.240.4860.1767.
Quemerais, E., and J. L. Bertaux (1993), Radiative Transfer in the Interplanetary Medium at Lyman Alpha, Astron. Astrophys., 277, 283–301.
Rottman, G. J., N. W. Thomas, and W. McClintock (2006), SORCE solar UV irradiance results, Adv. Space Sci., 37, 201–208, doi:10.1016/j.asr.2005.02.072.
Villanueva, G., M. Mumma, R. Novak, H. U. Kaufl, P. Hartogh, T. Encrenaz, A. Tokunaga, A. Khayat, and M. D. Smith (2015), Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs, Science, 348(6231), 218–221, doi:10.1126/science.aaa3630.
Yung, Y. L., and D. M. Kass (1998), Deuteronomy?: A Puzzle of Deuterium and Oxygen on Mars, Science, 280, 1545–1546, doi:10.1126/science.280.5369.1545.
Yung, Y. L., J. S. Wed, J. Pinto, M. Allen, K. Pierce, and S. Paulson (1988), HDO in the Martian Atmosphere: Implications for the Abundance of Crustal Water, Icarus, 76, 146–159, doi:10.1016/0019-1035(88)90147-9.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.