[en] Working memory is a highly heritable complex cognitive trait that is critical for a number of higher-level functions. However, the neural substrates of this behavioral phenotype are intricate and it is unknown through what precise biological mechanism variation in working memory is transmitted. In this review we explore different functional and structural components of the working memory circuitry, and the degree to which each of them is contributed to by genetic factors. Specifically, we consider dopaminergic function, glutamatergic function, white matter integrity and gray matter structure all of which provide potential mechanisms for the inheritance of working memory deficits. In addition to discussing the overall heritability of these measures we also address specific genes that may play a role. Each of these heritable components has the potential to uniquely contribute to the working memory deficits observed in genetic disorders, including 22q deletion syndrome, fragile X syndrome, phenylketonuria (PKU), and schizophrenia. By observing the individual contributions of disruptions in different components of the working memory circuitry to behavioral performance, we highlight the concept that there may be many routes to a working memory deficit; even though the same cognitive measure may be a valid endophenotype across different disorders, the underlying cause of, and treatment for, the deficit may differ. This has implications for our understanding of the transmission of working memory deficits in both healthy and disordered populations.
Ando J., Ono Y., Wright M.J. Genetic structure of spatial and verbal working memory. Behav Genet 2001, 31:615-624.
Chen L.S., Rice T.K., Thompson P.A., Barch D.M., Csernansky J.G. Familial aggregation of clinical and neurocognitive features in sibling pairs with and without schizophrenia. Schizophr Res 2009, 111:159-166.
Baddeley A., Logie R.H. Working Memory: The Multiple Component Model. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control 1999.
Lepage M., Ghaffar O., Nyberg L., Tulving E. Prefrontal cortex and episodic memory retrieval mode. Proc Natl Acad Sci USA 2000, 97:506-511.
Baddeley A. The episodic buffer: a new component of working memory?. Trends Cogn Sci 2000, 4:417-423.
Jacobsen C.F. Studies of cerbral function in primates: I. The functions of the frontal association areas in monkeys. Comp Psychol Monogr 1936, 13:1-60.
Goldman-Rakic P.S. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci 1996, 351:1445-1453.
Barch D.M., Carter C.S. Measurement issues in the use of cognitive neuroscience tasks in drug development for impaired cognition in schizophrenia: a report of the second consensus building conference of the CNTRICS initiative. Schizophr Bull 2008, 34:613-618.
Sternberg S. High-speed scanning in human memory. Science 1966, 153:652-654.
Owen A.M., McMillan K.M., Laird A.R., Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005, 25:46-59.
Rypma B., D'Esposito M. The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proc Natl Acad Sci USA 1999, 96:6558-6563.
Fuster J.M., Alexander G.E. Neuron activity related to short-term memory. Science 1971, 173:652-654.
Funahashi S., Bruce C.J., Goldman-Rakic P.S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 1989, 61:331-349.
Goldman-Rakic P.S. Regional and cellular fractionation of working memory. Proc Natl Acad Sci USA 1996, 93:13473-13480.
Fuster J.M., Alexander G.E. Delayed response deficit by cryogenic depression of frontal cortex. Brain Res 1970, 20:85-90.
Fuster J.M., Bauer R.H., Jervey J.P. Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp Neurol 1982, 77:679-694.
Paulesu E., Frith C.D., Frackowiak R.S. The neural correlates of the verbal component of working memory. Nature 1993, 362:342-345.
Smith E.E., Jonides J. Neuroimaging analyses of human working memory. Proc Natl Acad Sci USA 1998, 95:12061-12068.
Smith E.E., Jonides J. Working memory: a view from neuroimaging. Cognit Psychol 1997, 33:5-42.
Chafee M.V., Goldman-Rakic P.S. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 1998, 79:2919-2940.
Quintana J., Fuster J.M. From perception to action: temporal integrative functions of prefrontal and parietal neurons. Cereb Cortex 1999, 9:213-221.
Petrides M., Pandya D.N. Association pathways of the prefrontal cortex and functional observations. Principles of frontal lobe function 2002, Oxford University Press, New York.
D'Esposito M., Detre J.A., Alsop D.C., Shin R.K., Atlas S., Grossman M. The neural basis of the central executive system of working memory. Nature 1995, 378:279-281.
Gruber O. Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cereb Cortex 2001, 11:1047-1055.
Goldman-Rakic P.S. The cortical dopamine system: role in memory and cognition. Adv Pharmacol 1998, 42:707-711.
Lidow M.S., Goldman-Rakic P.S., Gallager D.W., Rakic P. Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride. [3H]spiperone and [3H]SCH23390. Neuroscience 1991, 40:657-671.
Charuchinda C., Supavilai P., Karobath M., Palacios J.M. Dopamine D2 receptors in the rat brain: autoradiographic visualization using a high-affinity selective agonist ligand. J Neurosci 1987, 7:1352-1360.
Williams G.V., Goldman-Rakic P.S. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995, 376:572-575.
Seamans J.K., Floresco S.B., Phillips A.G. D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 1998, 18:1613-1621.
Brozoski T.J., Brown R.M., Rosvold H.E., Goldman P.S. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 1979, 205:929-932.
Simon H., Scatton B., Moal M.L. Dopaminergic A10 neurones are involved in cognitive functions. Nature 1980, 286:150-151.
Zahrt J., Taylor J.R., Mathew R.G., Arnsten A.F. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 1997, 17:8528-8535.
Arnsten A.F., Cai J.X., Murphy B.L., Goldman-Rakic P.S. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl) 1994, 116:143-151.
Murphy B.L., Arnsten A.F., Goldman-Rakic P.S., Roth R.H. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA 1996, 93:1325-1329.
Goldman-Rakic P.S., Muly E.C., Williams G.V. D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 2000, 31:295-301.
Seamans J.K., Yang C.R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2004, 74:1-58.
Mehta M.A., Manes F.F., Magnolfi G., Sahakian B.J., Robbins T.W. Impaired set-shifting and dissociable effects on tests of spatial working memory following the dopamine D2 receptor antagonist sulpiride in human volunteers. Psychopharmacology (Berl) 2004, 176:331-342.
Von Huben S.N., Davis S.A., Lay C.C., Katner S.N., Crean R.D., Taffe M.A. Differential contributions of dopaminergic D1- and D2-like receptors to cognitive function in rhesus monkeys. Psychopharmacology (Berl) 2006, 188:586-596.
Winterer G., Weinberger D.R. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 2004, 27:683-690.
Floresco S.B., Magyar O. Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl) 2006, 188:567-585.
Tunbridge E.M., Harrison P.J., Weinberger D.R. Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 2006, 60:141-151.
Lachman H.M., Papolos D.F., Saito T., Yu Y.M., Szumlanski C.L., Weinshilboum R.M. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996, 6:243-250.
Wang X., He G., Gu N., Yang J., Tang J., Chen Q., et al. Association of G72/G30 with schizophrenia in the Chinese population. Biochem Biophys Res Commun 2004, 319:1281-1286.
de Frias C.M., Marklund P., Eriksson E., Larsson A., Oman L., Annerbrink K., et al. Influence of COMT gene polymorphism on fMRI-assessed sustained and transient activity during a working memory task. J Cogn Neurosci 2010, 22:1614-1622.
Egan M.F., Goldberg T.E., Kolachana B.S., Callicott J.H., Mazzanti C.M., Straub R.E., et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001, 98:6917-6922.
Goldberg T.E., Egan M.F., Gscheidle T., Coppola R., Weickert T., Kolachana B.S., et al. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 2003, 60:889-896.
Mattay V.S., Goldberg T.E., Fera F., Hariri A.R., Tessitore A., Egan M.F., et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 2003, 100:6186-6191.
Gosso M.F., de Geus E.J., Polderman T.J., Boomsma D.I., Heutink P., Posthuma D. Common variants underlying cognitive ability: further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes Brain Behav 2008, 7:355-364.
Shackman A.J., Sarinopoulos I., Maxwell J.S., Pizzagalli D.A., Lavric A., Davidson R.J. Anxiety selectively disrupts visuospatial working memory. Emotion 2006, 6:40-61.
Barnett J.H., Scoriels L., Munafo M.R. Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol Psychiatry 2008, 64:137-144.
Bilder R.M., Volavka J., Czobor P., Malhotra A.K., Kennedy J.L., Ni X., et al. Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol Psychiatry 2002, 52:701-707.
Davatzikos C., Shen D., Gur R.C., Wu X., Liu D., Fan Y., et al. Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch Gen Psychiatry 2005, 62:1218-1227.
Bray N.J., Buckland P.R., Williams N.M., Williams H.J., Norton N., Owen M.J., et al. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 2003, 73:152-161.
Meyer-Lindenberg A., Weinberger D. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006, 7:808-827.
Xu H., Kellendonk C.B., Simpson E.H., Keilp J.G., Bruder G.E., Polan H.J., et al. DRD2 C957T polymorphism interacts with the COMT Val158Met polymorphism in human working memory ability. Schizophr Res 2007, 90:104-107.
Gosso M.F., de Geus E.J., Polderman T.J., Boomsma D.I., Heutink P., Posthuma D. Catechol O-methyl transferase and dopamine D2 receptor gene polymorphisms: evidence of positive heterosis and gene-gene interaction on working memory functioning. Eur J Hum Genet 2008, 16:1075-1082.
Kimberg D.Y., D'Esposito M., Farah M.J. Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport 1997, 8:3581-3585.
Arnsten A.F., Goldman-Rakic P.S. Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry 1998, 55:362-368.
Mehta M.A., Swainson R., Ogilvie A.D., Sahakian J., Robbins T.W. Improved short-term spatial memory but impaired reversal learning following the dopamine D(2) agonist bromocriptine in human volunteers. Psychopharmacology (Berl) 2001, 159:10-20.
Mehta M.A., Sahakian B.J., McKenna P.J., Robbins T.W. Systemic sulpiride in young adult volunteers simulates the profile of cognitive deficits in Parkinson's disease. Psychopharmacology (Berl) 1999, 146:162-174.
Stelzel C., Basten U., Montag C., Reuter M., Fiebach C.J. Effects of dopamine-related gene-gene interactions on working memory component processes. Eur J Neurosci 2009, 29:1056-1063.
Markett S.A., Montag C., Reuter M. The association between dopamine DRD2 polymorphisms and working memory capacity is modulated by a functional polymorphism on the nicotinic receptor gene CHRNA4. J Cogn Neurosci 2010, 22:1944-1954.
Bertolino A., Taurisano P., Pisciotta N.M., Blasi G., Fazio L., Romano R., et al. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance. PLoS ONE 2010, 5:e9348.
Blau N., van Spronsen F.J., Levy H.L. Phenylketonuria. Lancet 2010, 376:1417-1427.
Diamond A. Consequences of variations in genes that affect dopamine in prefrontal cortex. Cereb Cortex 2007, 17(Suppl. 1):i161-i170.
Bradberry C.W., Karasic D.H., Deutch A.Y., Roth R.H. Regionally-specific alterations in mesotelencephalic dopamine synthesis in diabetic rats: association with precursor tyrosine. J Neural Transm Gen Sect 1989, 78:221-229.
Tam S.Y., Elsworth J.D., Bradberry C.W., Roth R.H. Mesocortical dopamine neurons: high basal firing frequency predicts tyrosine dependence of dopamine synthesis. J Neural Transm Gen Sect 1990, 81:97-110.
Welsh M.C., Pennington B.F., Ozonoff S., Rouse B., McCabe E.R. Neuropsychology of early-treated phenylketonuria: specific executive function deficits. Child Dev 1990, 61:1697-1713.
Bik-Multanowski M., Pietrzyk J.J., Mozrzymas R. Routine use of CANTAB system for detection of neuropsychological deficits in patients with PKU. Mol Genet Metab 2011, 102:210-213.
Topakas E., Kyriakopoulos S., Biely P., Hirsch J., Vafiadi C., Christakopoulos P. Carbohydrate esterases of family 2 are 6-O-deacetylases. FEBS Lett 2010, 584:543-548.
Bearden C.E., Reus V.I., Freimer N.B. Why genetic investigation of psychiatric disorders is so difficult. Curr Opin Genet Dev 2004, 14:280-286.
Vered Y., Spivak B., Nechmad A., Schlapnikov N., Graff E., Feinberg I., et al. Plasma serotonin response to carbohydrate-rich food in chronic schizophrenic patients: clozapine versus classic antipsychotic agents. Hum Psychopharmacol 2001, 16:403-407.
Shashi V., Keshavan M.S., Howard T.D., Berry M.N., Basehore M.J., Lewandowski E., et al. Cognitive correlates of a functional COMT polymorphism in children with 22q11.2 deletion syndrome. Clin Genet 2006, 69:234-238.
Glaser B., Debbane M., Hinard C., Morris M.A., Dahoun S.P., Antonarakis S.E., et al. No evidence for an effect of COMT Val158Met genotype on executive function in patients with 22q11 deletion syndrome. Am J Psychiatry 2006, 163:537-539.
Bearden C.E., Jawad A.F., Lynch D.R., Monterossso J.R., Sokol S., McDonald-McGinn D.M., et al. Effects of COMT genotype on behavioral symptomatology in the 22q11.2 Deletion Syndrome. Child Neuropsychol 2005, 11:109-117.
Gothelf D., Eliez S., Thompson T., Hinard C., Penniman L., Feinstein C., et al. COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nat Neurosci 2005, 8:1500-1502.
Bassett A.S., Caluseriu O., Weksberg R., Young D.A., Chow E.W. Catechol-O-methyl transferase and expression of schizophrenia in 73 adults with 22q11 deletion syndrome. Biol Psychiatry 2007, 61:1135-1140.
Karayiorgou M., Gogos J.A. The molecular genetics of the 22q11-associated schizophrenia. Brain Res Mol Brain Res 2004, 132:95-104.
Mukai J., Dhilla A., Drew L.J., Stark K.L., Cao L., MacDermott A.B., et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 2008, 11:1302-1310.
Stark K.L., Xu B., Bagchi A., Lai W.S., Liu H., Hsu R., et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008, 40:751-760.
Sigurdsson T., Stark K.L., Karayiorgou M., Gogos J.A., Gordon J.A. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 2010, 464:763-767.
Goldman-Rakic P.S. Cellular basis of working memory. Neuron 1995, 14:477-485.
Compte A., Brunel N., Goldman-Rakic P.S., Wang X.J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 2000, 10:910-923.
Garavan H., Kelley D., Rosen A., Rao S.M., Stein E.A. Practice-related functional activation changes in a working memory task. Microsc Res Tech 2000, 51:54-63.
Lewis D.A., Moghaddam B. Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 2006, 63:1372-1376.
Durstewitz D., Seamans J.K. The computational role of dopamine D1 receptors in working memory. Neural Netw 2002, 15:561-572.
Howard M.W., Rizzuto D.S., Caplan J.B., Madsen J.R., Lisman J., Aschenbrenner-Scheibe R., et al. Gamma oscillations correlate with working memory load in humans. Cereb Cortex 2003, 13:1369-1374.
Talbot K., Eidem W.L., Tinsley C.L., Benson M.A., Thompson E.W., Smith R.J., et al. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 2004, 113:1353-1363.
Chen X.W., Feng Y.Q., Hao C.J., Guo X.L., He X., Zhou Z.Y., et al. DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol 2008, 181:791-801.
Numakawa T., Yagasaki Y., Ishimoto T., Okada T., Suzuki T., Iwata N., et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 2004, 13:2699-2708.
Jentsch J.D., Trantham-Davidson H., Jairl C., Tinsley M., Cannon T.D., Lavin A. Dysbindin modulates prefrontal cortical glutamatergic circuits and working memory function in mice. Neuropsychopharmacology 2009, 24(12):2601-2608.
Feng Y.Q., Zhou Z.Y., He X., Wang H., Guo X.L., Hao C.J., et al. Dysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia. Schizophr Res 2008, 106:218-228.
Karlsgodt K., Robleto K., Trantham-Davidson H., Jairl C., Cannon T.D., Lavin A., et al. Reduced dysbindin expression mediates N-methyl-d-aspartate receptor hypofunction and impaired working memory performance. Biol Psychiatry 2011, 69:28-34.
Burdick K.E., Goldberg T.E., Funke B., Bates J.A., Lencz T., Kucherlapati R., et al. DTNBP1 genotype influences cognitive decline in schizophrenia. Schizophr Res 2007, 89:169-172.
Zinkstok J.R., de Wilde O., van Amelsvoort T.A., Tanck M.W., Baas F., Linszen D.H. Association between the DTNBP1 gene and intelligence: a case-control study in young patients with schizophrenia and related disorders and unaffected siblings. Behav Brain Funct 2007, 3:19.
Donohoe G., Morris D.W., Clarke S., McGhee K.A., Schwaiger S., Nangle J.M., et al. Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: a preliminary study. Neuropsychologia 2007, 45:454-458.
Fallgatter A.J., Herrmann M.J., Hohoff C., Ehlis A.C., Jarczok T.A., Freitag C.M., et al. DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in healthy individuals. Neuropsychopharmacology 2006, 31:2002-2010.
Markov V., Krug A., Krach S., Jansen A., Eggermann T., Zerres K., et al. Impact of schizophrenia-risk gene dysbindin 1 on brain activation in bilateral middle frontal gyrus during a working memory task in healthy individuals. Hum Brain Mapp 2010, 31:266-275.
Chonchaiya W., Schneider A., Hagerman R.J. Fragile X: a family of disorders. Adv Pediatr 2009, 56:165-186.
Kwon H., Menon V., Eliez S., Warsofsky I.S., White C.D., Dyer-Friedman J., et al. Functional neuroanatomy of visuospatial working memory in fragile X syndrome: relation to behavioral and molecular measures. Am J Psychiatry 2001, 158:1040-1051.
Baker S., Hooper S., Skinner M., Hatton D., Schaaf J., Ornstein P., et al. Working memory subsystems and task complexity in young boys with Fragile X syndrome. J Intellect Disabil Res 2011, 55:19-29.
Cornish K.M., Kogan C.S., Li L., Turk J., Jacquemont S., Hagerman R.J. Lifespan changes in working memory in fragile X premutation males. Brain Cogn 2009, 69:551-558.
Hooper S.R., Hatton D., Sideris J., Sullivan K., Hammer J., Schaaf J., et al. Executive functions in young males with fragile X syndrome in comparison to mental age-matched controls: baseline findings from a longitudinal study. Neuropsychology 2008, 22:36-47.
Munir F., Cornish K.M., Wilding J. Nature of the working memory deficit in fragile-X syndrome. Brain Cogn 2000, 44:387-401.
Hashimoto R., Backer K.C., Tassone F., Hagerman R.J., Rivera S.M. An fMRI study of the prefrontal activity during the performance of a working memory task in premutation carriers of the fragile X mental retardation 1 gene with and without fragile X-associated tremor/ataxia syndrome (FXTAS). J Psychiatr Res 2011, 45:36-43.
Menon V., Anagnoson R.T., Mathalon D.H., Glover G.H., Pfefferbaum A. Functional neuroanatomy of auditory working memery in schizophrenia: relation to positive and negative symptoms. Neuroimage 2000, 13:433-446.
Jacquemont S., Curie A., des Portes V., Torrioli M.G., Berry-Kravis E., Hagerman R.J., et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med 2011, 3:64ra1.
Bear M.F., Huber K.M., Warren S.T. The mGluR theory of fragile X mental retardation. Trends Neurosci 2004, 27:370-377.
Huber K.M., Gallagher S.M., Warren S.T., Bear M.F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 2002, 99:7746-7750.
Fowler S.W., Ramsey A.K., Walker J.M., Serfozo P., Olive M.F., Schachtman T.R., et al. Functional interaction of mGlu5 and NMDA receptors in aversive learning in rats. Neurobiol Learn Mem 2011, 95:73-79.
Moghaddam B., Jackson M. Effect of stress on prefrontal cortex function. Neurotox Res 2004, 6:73-78.
Balschun D., Zuschratter W., Wetzel W. Allosteric enhancement of metabotropic glutamate receptor 5 function promotes spatial memory. Neuroscience 2006, 142:691-702.
Baare W.F., van Oel C.J., Hulshoff Pol H.E., Schnack H.G., Durston S., Sitskoorn M.M., et al. Volumes of brain structures in twins discordant for schizophrenia. Arch Gen Psychiatry 2001, 58:33-40.
Hulshoff Pol H.E., Schnack H.G., Posthuma D., Mandl R.C., Baare W.F., van Oel C., et al. Genetic contributions to human brain morphology and intelligence. J Neurosci 2006, 26:10235-10242.
Brouwer R.M., Mandl R.C., Peper J.S., van Baal G.C., Kahn R.S., Boomsma D.I., et al. Heritability of DTI and MTR in nine-year-old children. Neuroimage 2010, 53:1085-1092.
Pfefferbaum A., Sullivan E.V., Carmelli D. Genetic regulation of regional microstructure of the corpus callosum in late life. Neuroreport 2001, 12:1677-1681.
Chiang M.C., Barysheva M., Shattuck D.W., Lee A.D., Madsen S.K., Avedissian C., et al. Genetics of brain fiber architecture and intellectual performance. J Neurosci 2009, 29:2212-2224.
Kochunov P., Glahn D.C., Lancaster J.L., Winkler A.M., Smith S., Thompson P.M., et al. Genetics of microstructure of cerebral white matter using diffusion tensor imaging. Neuroimage 2010, 53(3):1109-1116.
Kaye E.M. Update on genetic disorders affecting white matter. Pediatr Neurol 2001, 24:11-24.
Filley C.M. The behavioral neurology of white matter 2001, Oxford University Press, Oxford.
Carmelli D., DeCarli C., Swan G.E., Jack L.M., Reed T., Wolf P.A., et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke 1998, 29:1177-1181.
Paternoster L., Chen W., Sudlow C.L. Genetic determinants of white matter hyperintensities on brain scans: a systematic assessment of 19 candidate gene polymorphisms in 46 studies in 19,000 subjects. Stroke 2009, 40:2020-2026.
White T., Andreasen N.C., Nopoulos P. Brain volumes and surface morphology in monozygotic twins. Cereb Cortex 2002, 12:486-493.
Peled S., Gudbjartsson H., Westin C., Kikinis R., Jolesz F. Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts. Brain Res 1998, 27-33.
Westin CFMSEKBEPJFA, Kikinis R. Image Processing for Diffusion Tensor Magnetic Resonance Imaging; 1999.
Karlsgodt K., Kochunov P., Winkler A., Laird A., Almasy L., Duggirala R., et al. A multimodal assessment of the genetic control over working memory. J Neurosci 2010, 30:8197-8202.
Chiang M.C., McMahon K.L., de Zubicaray G.I., Martin N.G., Hickie I., Toga A.W., et al. Genetics of white matter development: a DTI study of 705 twins and their siblings aged 12 to 29. Neuroimage 2011, 54:2308-2317.
Jahanshad N., Lee A.D., Barysheva M., McMahon K.L., de Zubicaray G.I., Martin N.G., et al. Genetic influences on brain asymmetry: a DTI study of 374 twins and siblings. Neuroimage 2010, 52:455-469.
Chiang M.C., Barysheva M., Lee A.D., Madsen S., Klunder A.D., Toga A.W., et al. Brain fiber architecture, genetics, and intelligence: a high angular resolution diffusion imaging (HARDI) study. Med Image Comput Comput Assist Interv 2008, 11:1060-1067.
Pfefferbaum A., Sullivan E.V., Swan G.E., Carmelli D. Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiol Aging 2000, 21:63-74.
Smith E.E., Jonides J., Marshuetz C., Koeppe R.A. Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci USA 1998, 95:876-882.
Posthuma D., Baare W.F., Hulshoff Pol H.E., Kahn R.S., Boomsma D.I., De Geus E.J. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. Twin Res 2003, 6:131-139.
Karlsgodt K.H., van Erp T.G., Poldrack R.A., Bearden C.E., Nuechterlein K.H., Cannon T.D. Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biol Psychiatry 2008, 63:512-518.
Bonzano L., Pardini M., Mancardi G.L., Pizzorno M., Roccatagliata L. Structural connectivity influences brain activation during PVSAT in Multiple Sclerosis. Neuroimage 2009, 44:9-15.
Dineen R.A., Vilisaar J., Hlinka J., Bradshaw C.M., Morgan P.S., Constantinescu C.S., et al. Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 2009, 132:239-249.
Harris G.J., Jaffin S.K., Hodge S.M., Kennedy D., Caviness V.S., Marinkovic K., et al. Frontal white matter and cingulum diffusion tensor imaging deficits in alcoholism. Alcohol Clin Exp Res 2008, 32:1001-1013.
Gamett D.C., Greene T., Wagreich A.R., Kim H.H., Koland J.G., Cerione R.A. Heregulin-stimulated signaling in rat pheochromocytoma cells. Evidence for ErbB3 interactions with Neu/ErbB2 and p85. J Biol Chem 1995, 270:19022-19027.
Vaskovsky A., Lupowitz Z., Erlich S., Pinkas-Kramarski R. ErbB-4 activation promotes neurite outgrowth in PC12 cells. J Neurochem 2000, 74:979-987.
Villegas R., Villegas G.M., Longart M., Hernandez M., Maqueira B., Buonanno A., et al. Neuregulin found in cultured-sciatic nerve conditioned medium causes neuronal differentiation of PC12 cells. Brain Res 2000, 852:305-318.
Liu Y., Ford B., Mann M.A., Fischbach G.D. Neuregulins increase alpha7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J Neurosci 2001, 21:5660-5669.
Marchionni M.A., Goodearl A.D., Chen M.S., Bermingham-McDonogh O., Kirk C., Hendricks M., et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 1993, 362:312-318.
Vartanian T., Fischbach G., Miller R. Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proc Natl Acad Sci USA 1999, 96:731-735.
McIntosh A.M., Moorhead T.W., Job D., Lymer G.K., Munoz Maniega S., McKirdy J., et al. The effects of a neuregulin 1 variant on white matter density and integrity. Mol Psychiatry 2007, 13(11):1054-1059.
Zuliani R., Moorhead T.W., Bastin M.E., Johnstone E.C., Lawrie S.M., Brambilla P., et al. Genetic variants in the ErbB4 gene are associated with white matter integrity. Psychiatry Res 2011, 191:133-137.
Konrad A., Vucurevic G., Musso F., Stoeter P., Dahmen N., Winterer G. ErbB4 genotype predicts left frontotemporal structural connectivity in human brain. Neuropsychopharmacology 2009, 34:641-650.
El Fadili K., Imbeault M., Messier N., Roy G., Gourbal B., Bergeron M., et al. Modulation of gene expression in human macrophages treated with the anti-leishmania pentavalent antimonial drug sodium stibogluconate. Antimicrob Agents Chemother 2008, 52:526-533.
Krug A., Markov V., Eggermann T., Krach S., Zerres K., Stocker T., et al. Genetic variation in the schizophrenia-risk gene neuregulin1 correlates with differences in frontal brain activation in a working memory task in healthy individuals. Neuroimage 2008, 42:1569-1576.
Duffy L., Cappas E., Lai D., Boucher A.A., Karl T. Cognition in transmembrane domain neuregulin 1 mutant mice. Neuroscience 2010, 170:800-807.
Thompson P.M., Cannon T.D., Narr K.L., van Erp T., Poutanen V.P., Huttunen M., et al. Genetic influences on brain structure. Nat Neurosci 2001, 4:1253-1258.
Peper J.S., Brouwer R.M., Boomsma D.I., Kahn R.S., Hulshoff Pol H.E. Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp 2007, 28:464-473.
Baare W.F., Hulshoff Pol H.E., Boomsma D.I., Posthuma D., de Geus E.J., Schnack H.G., et al. Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex 2001, 11:816-824.
Wright I.C., Sham P., Murray R.M., Weinberger D.R., Bullmore E.T. Genetic contributions to regional variability in human brain structure: methods and preliminary results. Neuroimage 2002, 17:256-271.
Winkler A.M., Kochunov P., Blangero J., Almasy L., Zilles K., Fox P.T., et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 2010, 53:1135-1146.
Cannon T.D., Huttunen M.O., Lonnqvist J., Tuulio-Henriksson A., Prikola T., Glahn D., et al. The inheritiance of neuropsychological dysfunction in twins discordant for schizophrenia. Am Soc Hum Genet 2000, 67:369-382.
Lyons M.J., Toomey R., Seidman L.J., Kremen W.S., Faraone S.V., Tsuang M.T. Verbal learning and memory in relatives of schizophrenics: preliminary findings. Biol Psychiatry 1995, 37:750-753.
Tuulio-Henriksson A., Haukka J., Partonen T., Varilo T., Paunio T., Ekelund J., et al. Heritability and number of quantitative trait loci of neurocognitive functions in families with schizophrenia. Am J Med Genet 2002, 114:483-490.
Posthuma D., De Gues E.J., Baare W.F., Hulshoff Pol H.E., Kahn R.S., Boomsma D.I. The association between brain volume and intelligence is of genetic origin. Nat Neurosci 2002, 5(2):83-84.
Joshi A.A., Lepore N., Joshi S.H., Lee A.D., Barysheva M., Stein J.L., et al. The contribution of genes to cortical thickness and volume. Neuroreport 2011, 22:101-105.
Frangou S., Chitins X., Williams S.C., Mapping I.Q. and gray matter density in healthy young people. Neuroimage 2004, 23:800-805.
Lenroot R.K., Schmitt J.E., Ordaz S.J., Wallace G.L., Neale M.C., Lerch J.P., et al. Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Hum Brain Mapp 2009, 30:163-174.
Plomin R., Kovas Y., Haworth C.M. Generalist genes: genetic links between brain, mind, and education. Mind Brain Educ 2007, 1:11-19.
Goldstein J.M., Buka S.L., Seidman L.J., Tsuang M.T. Specificity of familial transmission of schizophrenia psychosis spectrum and affective psychoses in the New England family study's high-risk design. Arch Gen Psychiatry 2010, 67:458-467.
Hartberg C.B., Lawyer G., Nyman H., Jonsson E.G., Haukvik U.K., Saetre P., et al. Investigating relationships between cortical thickness and cognitive performance in patients with schizophrenia and healthy adults. Psychiatry Res 2010, 182:123-133.
Cocchi L., Bosisio F., Carter O., Wood S.J., Berchtold A., Conus P., et al. Visuospatial working memory deficits and visual pursuit impairments are not directly related in schizophrenia. Aust N Z J Psychiatry 2009, 43:766-774.
Taki Y., Kinomura S., Sato K., Goto R., Wu K., Kawashima R., et al. Correlation between gray/white matter volume and cognition in healthy elderly people. Brain Cogn 2011, 75:170-176.
Bartres-Faz D., Sole-Padulles C., Junque C., Rami L., Bosch B., Bargallo N., et al. Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders. Biol Psychol 2009, 80:256-259.
Braff D.L. Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 1993, 19:233-259.
Gray J.A., Feldon J., Rawlins J.N., Hemsley D.R. The neuropsychology of schizophrenia. Behav Brain Sci 1991, 14:1-84.
Saykin A.J., Gur R.C., Gur R.E., Mozley P.D., Mozley L.H., Resnick S.M., et al. Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch Gen Psychiatry 1991, 48:618-624.
Saykin A.J., Shtasel D.L., Gur R.E., Kester D.B., Mozley L.H., Stafiniak P., et al. Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry 1994, 51:124-131.
Gold J.M., Carpenter C., Randolph C., Goldberg T.E., Weinberger D.R. Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Arch Gen Psychiatry 1997, 54:159-165.
Stone M., Gabrieli J.D., Stebbins G.T., Sullivan E.V. Working and strategic memory deficits in schizophrenia. Neuropsychology 1998, 12:278-288.
Condray R., Steinhauer S.R., van Kammen D.P., Kasparek A. Working memory capacity predicts language comprehension in schizophrenic patients. Schizophr Res 1996, 20:1-13.
Park S., Holzman P.S. Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry. 1992, 49:975-982.
Park S., Holzman P.S. Association of working memory deficit and eye tracking dysfunction in schizophrenia. Schizophr Res 1993, 11:55-61.
Carter C., Robertson L., Nordahl T., Chaderjian M., Kraft L., O'Shora-Celaya L. Spatial working memory deficits and their relationship to negative symptoms in unmedicated schizophrenia patients. Biol Psychiatry 1996, 40:930-932.
Fleming K., Goldberg T.E., Binks S., Randolph C., Gold J.M., Weinberger D.R. Visuospatial working memory in patients with schizophrenia. Biol Psychiatry 1997, 41:43-49.
Cannon T.D., Huttunen M.O., Lonnqvist J., Tuulio-Henriksson A., Pirkola T., Glahn D., et al. The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am J Hum Genet 2000, 67:369-382.
Faraone S.V., Seidman L.J., Kremen W.S., Toomey R., Pepple J.R., Tsuang M.T. Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a 4-year follow-up study. J Abnorm Psychol 1999, 108:176-181.
Park S., Holzman P.S., Goldman-Rakic P.S. Spatial working memory deficits in the relatives of schizophrenic patients. Arch Gen Psychiatry 1995, 52:821-828.
Weinberger D.R., Berman K.F., Zec R.F. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 1986, 43:114-124.
Rubin P., Holm S., Friberg L., Videbech P., Andersen H.S., Bendsen B.B., et al. Altered modulation of prefrontal and subcortical brain activity in newly diagnosed schizophrenia and schizophreniform disorder. A regional cerebral blood flow study. Arch Gen Psychiatry 1991, 48:987-995.
Andreasen N.C., Rezai K., Alliger R., Swayze V.W., Flaum M., Kirchner P., et al. Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 1992, 49:943-958.
Carter C.S., Perlstein W., Ganguli R., Brar J., Mintun M., Cohen J.D. Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 1998, 155:1285-1287.
Yurgelun-Todd D.A., Waternaux C.M., Cohen B.M., Gruber S.A., English C.D., Renshaw P.F. Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production. Am J Psychiatry 1996, 153:200-205.
Berman K.F., Torrey E.F., Daniel D.G., Weinberger D.R. Regional cerebral blood flow in monozygotic twins discordant and concordant for schizophrenia. Arch Gen Psychiatry 1992, 49:927-934.
Cannon T.D., van Erp T.G., Huttunen M., Lonnqvist J., Salonen O., Valanne L., et al. Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 1998, 55:1084-1091.
Cannon T.D., Thompson P.M., van Erp T.G., Toga A.W., Poutanen V.P., Huttunen M. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. PNAS 2002, 99(5):3228-3333.
Seidman L.J., Yurgelun-Todd D., Kremen W.S., Woods B.T., Goldstein J.M., Faraone S.V., et al. Relationship of prefrontal and temporal lobe MRI measures to neuropsychological performance in chronic schizophrenia. Biol Psychiatry 1994, 35:235-246.
Maher B.A., Manschreck T.C., Woods B.T., Yurgelun-Todd D.A., Tsuang M.T. Frontal brain volume and context effects in short-term recall in schizophrenia. Biol Psychiatry 1995, 37:144-150.
Abi-Dargham A., Gil R., Krystal J., Baldwin R.M., Seibyl J.P., Bowers M., et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 1998, 155:761-767.
Creese IBDRSS.H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976, 192:481-483.
Abi-Dargham A., Mawlawi O., Lombardo I., Gil R., Martinez D., Huang Y., et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 2002, 22:3708-3719.
Jentsch J.D., Roth R.H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999, 20:201-225.
Jentsch J.D., Redmond D.E., Elsworth J.D., Taylor J.R., Youngren K.D., Roth R.H. Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 1997, 277:953-955.
Hertzmann M., Reba R.C., Kotlyarov E.V. Single photon emission computed tomography in phencyclidine and related drug abuse. Am J Psychiatry 1990, 147:255-256.
Wu J.C., Buchsbaum M.S., Bunney W.E. Positron emission tomography study of phencyclidine users as a possible drug model of schizophrenia. Yakubutsu Seishin Kodo 1991, 11:47-48.
Straub R.E., MacLean C.J., O'Neill F.A., Burke J., Murphy B., Duke F., et al. A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nat Genet 1995, 11:287-293.
Schwab S.G., Knapp M., Mondabon S., Hallmayer J., Borrmann-Hassenbach M., Albus M., et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003, 72:185-190.
Straub R.E., Jiang Y., MacLean C.J., Ma Y., Webb B.T., Myakishev M.V., et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002, 71:337-348.
Tang J.X., Zhou J., Fan J.B., Li X.W., Shi Y.Y., Gu N.F., et al. Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Mol Psychiatry 2003, 8:717-718.
Kirov G., Ivanov D., Williams N.M., Preece A., Nikolov I., Milev R., et al. Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biol Psychiatry 2004, 55:971-975.
Weickert C.S., Straub R.E., McClintock B.W., Matsumoto M., Hashimoto R., Hyde T.M., et al. Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 2004, 61:544-555.
Weickert C.S., Rothmond D.A., Hyde T.M., Kleinman J.E., Straub R.E. Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients. Schizophr Res 2008, 98:105-110.
Burdick K.E., Lencz T., Funke B., Finn C.T., Szeszko P.R., Kane J.M., et al. Genetic variation in DTNBP1 influences general cognitive ability. Hum Mol Genet 2006, 15:1563-1568.
Cho R.Y., Konecky R.O., Carter C.S. Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA 2006, 103:19878-19883.
Lewis S.B., Wolper R.A., Miralia L., Yang C., Shaw G. Detection of phosphorylated NF-H in the cerebrospinal fluid and blood of aneurysmal subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 2008, 28:1261-1271.
Akbarian S., Kim J.J., Potkin S.G., Hetrick W.P., Bunney W.E., Jones E.G. Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 1996, 53:425-436.
Kirkpatrick B., Conley R.C., Kakoyannis A., Reep R.L., Roberts R.C. Interstitial cells of the white matter in the inferior parietal cortex in schizophrenia: an unbiased cell-counting study. Synapse 1999, 34:95-102.
Kirkpatrick B., Messias N.C., Conley R.R., Roberts R.C. Interstitial cells of the white matter in the dorsolateral prefrontal cortex in deficit and nondeficit schizophrenia. J Nerv Ment Dis 2003, 191:563-567.
Konrad A., Winterer G. Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon?. Schizophr Bull 2008, 34:72-92.
Lim K.O., Hedehus M., Moseley M., de Crespigny A., Sullivan E.V., Pfefferbaum A. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry 1999, 56:367-374.
Ellison-Wright I., Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 2009, 108:3-10.
Kubicki M., McCarley R., Westin C.F., Park H.J., Maier S., Kikinis R., et al. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 2007, 41:15-30.
Szeszko P.R., Robinson D.G., Ashtari M., Vogel J., Betensky J., Sevy S., et al. Clinical and neuropsychological correlates of white matter abnormalities in recent onset schizophrenia. Neuropsychopharmacology 2008, 33:976-984.
Karlsgodt K., van Erp T.G., Poldrack R., Bearden C.E., Nuechterlein K.H., Cannon T.D. Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biol Psychiatry 2008, 63:512-518.
Perez-Iglesias R., Tordesillas-Gutierrez D., McGuire P.K., Barker G.J., Roiz-Santianez R., Mata I., et al. White matter integrity and cognitive impairment in first-episode psychosis. Am J Psychiatry 2010, 167:451-458.
Luck D., Buchy L., Czechowska Y., Bodnar M., Pike G.B., Campbell J.S., et al. Fronto-temporal disconnectivity and clinical short-term outcome in first episode psychosis: a DTI-tractography study. J Psychiatr Res 2011, 45:369-377.
Hakak Y., Walker J.R., Li C., Wong W.H., Davis K.L., Buxbaum J.D., et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001, 98:4746-4751.
Harris L.W., Lockstone H.E., Khaitovich P., Weickert C.S., Webster M.J., Bahn S. Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia. BMC Med Genomics 2009, 2:28.
Warrington E.K., Baddeley A.D. Amnesia and memory for visual location. Neuropsychologia 1974, 12:257-263.
Parker D.S., Chu W.W., Sabb F.W., Toga A.W., Bilder R.M. Literature mapping with PubAtlas-extending PubMed with a 'BLASTing interface'. Summit on Translat Bioinforma, 2009 2009, 90-94.