Troposphere: constituent transport and chemistry; Pollution: urban and regional; ethane; emission inventory; natural gas; fossil fuel; North America; emission ratio
Abstract :
[en] Recent measurements over the Northern Hemisphere indicate that the long-term decline in the atmospheric burden of ethane (C2H6) has ended and the abundance increased dramatically between 2010 and 2014. The rise in C2H6 atmospheric abundances has been attributed to oil and natural gas extraction in North America. Existing global C2H6 emission inventories are based on outdated activity maps that do not account for current oil and natural gas exploitation regions. We present an updated global C2H6 emission inventory based on 2010 satellite-derived CH4 fluxes with adjusted C2H6 emissions over the U.S. from the National Emission Inventory (NEI 2011). We contrast our global 2010 C2H6 emission inventory with one developed for 2001. The C2H6 difference between global anthropogenic emissions is subtle (7.9 versus 7.2 Tg yr−1), but the spatial distribution of the emissions is distinct. In the 2010 C2H6 inventory, fossil fuel sources in the Northern Hemisphere represent half of global C2H6 emissions and 95% of global fossil fuel emissions. Over the U.S., unadjusted NEI 2011 C2H6 emissions produce mixing ratios that are 14–50% of those observed by aircraft observations (2008–2014). When the NEI 2011 C2H6 emission totals are scaled by a factor of 1.4, the Goddard Earth Observing System Chem model largely reproduces a regional suite of observations, with the exception of the central U.S., where it continues to underpredict observed mixing ratios in the lower troposphere. We estimate monthly mean contributions of fossil fuel C2H6 emissions to ozone and peroxyacetyl nitrate surface mixing ratios over North America of ~1% and ~8%, respectively.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Tzompa-Sosa, Z. A.
Mahieu, Emmanuel ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Franco, Bruno ; Université de Liège > R&D Direction : Chercheurs ULiège en mobilité
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aikin, A. C., J. R. Herman, E. J. Maier, and C. J. McQuillan (1982), Atmospheric chemistry of ethane and ethylene, J. Geophys. Res., 87(C4), 3105, doi:10.1029/JC087iC04p03105.
Akagi, S. K., R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J. D. Crounse, and P. O. Wennberg (2011), Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11(9), 4039-4072, doi:10.5194/acp-11-4039-2011.
Atkinson, R. (1991), Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds, J. Phys. Chem., 20(3), 459-507.
Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, and I. Subcommittee (2004), Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II-Gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625-4055.
Aydin, M., K. R. Verhulst, E. S. Saltzman, M. O. Battle, S. A. Montzka, D. R. Blake, Q. Tang, and M. J. Prather (2011), Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air, Nature, 476(7359), 198-201, doi:10.1038/nature10352.
Barletta, B., S. Meinardi, F. Sherwood Rowland, C.-Y. Chan, X. Wang, S. Zou, L. Yin Chan, and D. R. Blake (2005), Volatile organic compounds in 43 Chinese cities, Atmos. Environ., 39(32), 5979-5990, doi:10.1016/j.atmosenv.2005.06.029.
Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. Li, H. Y. Liu, L. J. Mickley, and M. G. Schultz (2001), Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23,073, doi:10.1029/2001JD000807.
Blake, D. R., and F. S. Rowland (1986), Global atmospheric concentrations and source strength of ethane, Nature, 321(3), 231-233.
Blake, N. J., et al. (2014), Spatial distributions and source characterization of trace organic gases during SEAC4RS and comparison to DC3, paper presented at 2014 Fall Meeting, AGU, San Francisco, Calif.
Blumenstock, T., F. Hase, I. Kramer, S. Mikuteit, H. Fischer, F. Goutail, and U. Raffalski (2009), Winter to winter variability of chlorine activation and ozone loss as observed by ground-based FTIR measurements at Kiruna since winter 1993/94, Int. J. Remote Sens., 30(15-16), 4055-4064, doi:10.1080/01431160902821916.
Brandt, A. R., T. Yeskoo, S. McNally, K. Vafi, H. Cai, and M. Q. Wang (2015), Energy Intensity and Greenhouse Gas Emissions From Crude Oil Production in the Bakken Formation: Input Data and Analysis Methods, Energy Syst. Div. Argonne Natl. Lab., Lemont, Ill..
Calvert, J. G., R. G. Derwent, J. J. Orlando, G. S. Tyndall, and T. J. Wallington (2008), Mechanisms of Atmospheric Oxidation of the Alkanes, Oxford University Press, USA.
Conder, M. W., and K. A. Lawlor (2014), Production characteristics of liquids-rich resource plays challenge facility design., edited.
Etiope, G., and P. Ciccioli (2009), Earth’s degassing: A missing ethane and propane source, Science, 323, 1.
Field, R. A., J. Soltis, M. C. McCarthy, S. Murphy, and D. C. Montague (2015), Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter, Atmos. Chem. Phys., 15(6), 3527-3542, doi:10.5194/acp-15-3527-2015.
Fischer, E. V., D. A. Jaffe, and E. C. Weatherhead (2011), Free tropospheric peroxyacetyl nitrate (PAN) and ozone at Mount Bachelor: Potential causes of variability and timescale for trend detection, Atmos. Chem. Phys., 11(12), 5641-5654, doi:10.5194/acp-11-5641-2011.
Fischer, E. V., et al. (2014), Atmospheric peroxyacetyl nitrate (PAN): A global budget and source attribution, Atmos. Chem. Phys., 14(5), 2679-2698, doi:10.5194/acp-14-2679-2014.
Franco, B., et al. (2015), Retrieval of ethane from ground-based FTIR solar spectra using improved spectroscopy: Recent burden increase above Jungfraujoch, J. Quant. Spectrosc. Radiat. Transfer, 160, 36-49, doi:10.1016/j.jqsrt.2015.03.017.
Franco, B., et al. (2016), Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America, Environ. Res. Lett., 11(4044010), doi:10.1088/1748-9326/11/4/044010.
Fung, I., J. John, J. Lerner, E. Matthews, M. J. Prather, L. P. Steele, and P. J. Fraser (1991), Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13,033-13,065, doi:10.1029/91JD01247.
García, O. E., M. Schneider, A. Redondas, Y. González, F. Hase, T. Blumenstock, and E. Sepúlveda (2012), Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry, Atmos. Meas. Tech., 5(11), 2917-2931, doi:10.5194/amt-5-2917-2012.
Ghandi, A., S. Yeh, A. R. Brandt, K. Vafi, H. Cai, M. Q. Wang, B. R. Scanlon, and R. C. Reedy (2015), Energy Intensity and Greenhouse Gas Emissions From Crude Oil Production in the Eagle Ford Region: Input Data and Analysis Methods, Inst. of Transp. Stud., Univ. of Calif., Davis.
Gilman, J. B., B. M. Lerner, W. C. Kuster, and J. A. de Gouw (2013), Source signature of volatile organic compounds from oil and natural gas operations in northeastern Colorado, Environ. Sci. Technol., 47(3), 1297-1305, doi:10.1021/es304119a.
Gupta, M. L., R. J. Cicerone, D. R. Blake, F. S. Rowland, and I. S. A. Isaksen (1998), Global atmospheric distributions and source strengths of light hydrocarbons and tetrachloroethene, J. Geophys. Res., 103(D21), 28,219-28,235, doi:10.1029/98JD02645.
Hannigan, J. W., M. T. Coffey, and A. Goldman (2009), Semiautonomous FTS observation system for remote sensing of stratospheric and tropospheric gases, J. Atmos. Oceanic Tech., 26(9), 1814-1828, doi:10.1175/2009jtecha1230.1.
Helmig, D., et al. (2014a), Reconstruction of Northern Hemisphere 1950-2010 atmospheric non-methane hydrocarbons, Atmos. Chem. Phys., 14(3), 1463-1483, doi:10.5194/acp-14-1463-2014.
Helmig, D., C. R. Thompson, J. Evans, P. Boylan, J. Hueber, and J. H. Park (2014b), Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah, Environ. Sci. Technol., 48(9), 4707-4715, doi:10.1021/es405046r.
Helmig, D., et al. (2016), Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production, Nat. Geosci., 9, 490-495, doi:10.1038/ngeo2721.
Kanakidou, M., H. B. Singh, K. M. Valentin, and P. J. Crutzen (1991), A two-dimensional study of ethane and propane oxidation in the troposphere, J. Geophys. Res., 96, 15,395-315,413, doi:10.1029/91JD01345.
Kang, M., C. M. Kanno, M. C. Reid, X. Zhang, D. L. Mauzerall, M. A. Celia, Y. Chen, and T. C. Onstott (2014), Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania, Proc. Natl. Acad. Sci. U. S. A., 111(51), 18,173-18,177, doi:10.1073/pnas.1408315111.
Katzenstein, A. S., L. A. Doezema, I. J. Simpson, D. R. Blake, and F. S. Rowland (2003), Extensive regional atmospheric hydrocarbon pollution in the southwestern United States, Proc. Natl. Acad. Sci. U. S. A., 100(21), 11,975-11,979, doi:10.1073/pnas.1635258100.
Keller, C. A., M. S. Long, R. M. Yantosca, A. M. Da Silva, S. Pawson, and D. J. Jacob (2014), HEMCO v1.0: A versatile, ESMF-compliant component for calculating emissions in atmospheric models, Geosci. Model Dev., 7(4), 1409-1417, doi:10.5194/gmd-7-1409-2014.
Kohlhepp, R., S. Barthlott, T. Blumenstock, F. Hase, I. Kaiser, U. Raffalski, and R. Ruhnke (2011), Trends of HCl, ClONO2, and HF column abundances from ground-based FTIR measurements in Kiruna (Sweden) in comparison with KASIMA model calculations, Atmos. Chem. Phys., 11(10), 4669-4677, doi:10.5194/acp-11-4669-2011.
Kort, E. A., M. L. Smith, L. T. Murray, A. Gvakharia, A. R. Brandt, J. Peischl, T. B. Ryerson, C. Sweeney, and K. Travis (2016), Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift, Geophys. Res. Lett., 43, 4617-4623, doi:10.1002/2016gl068703.
Koss, A. R., et al. (2015), Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event, Atmos. Chem. Phys., 15(10), 5727-5741, doi:10.5194/acp-15-5727-2015.
McKain, K., et al. (2015), Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts, Proc. Natl. Acad. Sci. U. S. A., 112(7), 1941-1946, doi:10.1073/pnas.1416261112.
Naik, V., et al. (2013), Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13(10), 5277-5298, doi:10.5194/acp-13-5277-2013.
Olivier, J. G. J. (2002), On the Quality of Global Emission Inventories. Approaches, Methodologies, Input Data, and Uncertainties, Utrecht Univ., Netherlands.
Pacsi, A. P., Y. Kimura, G. McGaughey, E. C. McDonald-Buller, and D. T. Allen (2015), Regional ozone impacts of increased natural gas use in the Texas power sector and development in the Eagle Ford shale, Environ. Sci. Technol., 49(6), 3966-3973, doi:10.1021/es5055012.
Parker, R., et al. (2011), Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations, Geophys. Res. Lett., 38, L15807, doi:10.1029/2011GL047871.
Parrella, J. P., et al. (2012), Tropospheric bromine chemistry: Implications for present and pre-industrial ozone and mercury, Atmos. Chem. Phys., 12(15), 6723-6740, doi:10.5194/acp-12-6723-2012.
Peischl, J., et al. (2015a), Quantification of methane emissions from oil and natural gas extraction regions in the Central/Western U.S. and comparison to previous studies, paper presented at 2015 Fall Meeting, AGU, San Francisco, Calif.
Peischl, J., et al. (2015b), Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions, J. Geophys. Res. Atmos., 120, 2119-2139, doi:10.1002/2014JD022697.
Peischl, J., et al. (2016), Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota, J. Geophys. Res. Atmos., 121, 6101-6111, doi:10.1002/2015jd024631.
Pekney, N. J., G. Veloski, M. Reeder, J. Tamilia, E. Rupp, and A. Wetzel (2014), Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania’s Allegheny National Forest, J. Air Waste Manage. Assoc., 64(9), 1062-1072, doi:10.1080/10962247.2014.897270.
Pétron, G., et al. (2012), Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study, J. Geophys. Res., 117, D04304, doi:10.1029/2011JD016360.
Pétron, G., et al. (2014), A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin, J. Geophys. Res. Atmos., 121, 6836-6852, doi:10.1002/2013JD021272.
Plass-Dülmer, C., R. Koppmann, M. Ratte, and J. Rudolph (1995), Light nonmethane hydrocarbons in seawater, Global Biogeochem. Cycles, 9, 79-100, doi:10.1029/94GB02416.
Pozzer, A., J. Pollmann, D. Taraborrelli, P. Jöckel, D. Helmig, P. Tans, J. Hueber, and J. Lelieveld (2010), Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes, Atmos. Chem. Phys., 10(9), 4403-4422, doi:10.5194/acp-10-4403-2010.
Prather, M. J., C. D. Holmes, and J. Hsu (2012), Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803, doi:10.1029/2012GL051440.
Prinn, R. G., et al. (2005), Evidence for variability of atmospheric hydroxyl radicals over the past quarter century, Geophys. Res. Lett., 32 L07809, doi:10.1029/2004GL022228.
Randerson, J. T., Y. Chen, G. R. van der Werf, B. M. Rogers, and D. C. Morton (2012), Global burned area and biomass burning emissions from small fires, J. Geophys. Res., 117, G04012, doi:10.1029/2012JG002128.
Richter, D., P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman (2015), Compact highly sensitive multi-species airborne mid-IR spectrometer, Appl. Phys. B, 119(1), 119-131, doi:10.1007/s00340-015-6038-8.
Roscioli, J. R., et al. (2015), Measurements of methane emissions from natural gas gathering facilities and processing plants: Measurement methods, Atmos. Meas. Tech., 8(5), 2017-2035, doi:10.5194/amt-8-2017-2015.
Rudolph, J. (1995), The tropospheric distribution and budget of ethane, J. Geophys. Res., 100(6), 11.
Rudolph, J., and D. H. Ehhalt (1981), Measurements of C2-C5 hydrocarbons over the North Atlantic, J. Geophys. Res., 86(C12), 11,959, doi:10.1029/JC086iC12p11959.
Sander, S. P., et al. (2003), Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 14, edited by J. P. Laboratory, JPL Publ., Pasadena, Calif.
Sander, S. P., et al. (2011), Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, edited by J. P. Laboratory, JPL Publ., Pasadena, Calif.
Saunois, M., et al. (2016), The global methane budget: 2000-2012, Earth Syst. Sci. Data Discuss., 8(2), 697-751, doi:10.5194/essd-2016-25.
Schauffler, S. A., et al. (2014), Organic halogen and hydrocarbon distributions during SEAC4RS measured from the ER-2 and DC-8, paper presented 2014 Fall Meeting, AGU, San Francisco, Calif.
Schneider, M., P. M. Romero, F. Hase, T. Blumenstock, E. Cuevas, and R. Ramos (2010), Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92, Atmos. Meas. Tech., 3, 323-338.
Schwietzke, S., W. M. Griffin, H. S. Matthews, and L. M. Bruhwiler (2014), Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane, Environ. Sci. Technol., 48(14), 7714-7722, doi:10.1021/es501204c.
Sherwen, T., et al. (2016), Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem, Atmos. Chem. Phys., 16(18), 12,239-12,271, doi:10.5194/acp-16-12239-2016.
Simpson, I. J., et al. (2010), Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, Atmos. Chem. Phys., 10(23), 11,931-11,954, doi:10.5194/acp-10-11931-2010.
Simpson, I. J., et al. (2011), Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11(13), 6445-6463, doi:10.5194/acp-11-6445-2011.
Simpson, I. J., M. P. Sulbaek Andersen, S. Meinardi, L. Bruhwiler, N. J. Blake, D. Helmig, F. S. Rowland, and D. R. Blake (2012), Long-term decline of global atmospheric ethane concentrations and implications for methane, Nature, 488(7412), 490-494, doi:10.1038/nature11342.
Singh, H. B., and P. B. Zimmerman (1992), Atmospheric distribution and sources of nonmethane hydrocarbons, in Gaseous Pollutants: Characterization and Cycling, edited by J. O. Nriagu, pp. 177-235, Wiley, New York.
Speight, J. G. (2013), Shale Gas Properties and Processing, pp. i-iii, Gulf Prof., Boston.
Swarthout, R. F., R. S. Russo, Y. Zhou, A. H. Hart, and B. C. Sive (2013), Volatile organic compound distributions during the NACHTT campaign at the Boulder Atmospheric Observatory: Influence of urban and natural gas sources, J. Geophys. Res. Atmos., 118, 10,614-10,637, doi:10.1002/jgrd.50722.
Thompson, C. R., J. Hueber, and D. Helmig (2014), Influence of oil and gas emissions on ambient atmospheric non-methane hydrocarbons in residential areas of Northeastern Colorado, Elementa, 2(000035), 1-17, doi:10.12952/journal.elementa.000035.
Turner, A. J., and D. J. Jacob (2015), Balancing aggregation and smoothing errors in inverse models, Atmos. Chem. Phys., 15(12), 7039-7048, doi:10.5194/acp-15-7039-2015.
Turner, A. J., et al. (2015), Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 15(12), 7049-7069, doi:10.5194/acp-15-7049-2015.
U.S. Environmental Protection Agency (2013), National Emissions Inventory 2011, version 1, edited by E. P. Agency.
U.S. Environmental Protection Agency (2015), Drilling Productivity Report for key tight oil and shale gas regions.
van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen (2010), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009), Atmos. Chem. Phys., 10(23), 11,707-11,735, doi:10.5194/acp-10-11707-2010.
Vinciguerra, T., S. Yao, J. Dadzie, A. Chittams, T. Deskins, S. Ehrman, and R. R. Dickerson (2015), Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from ambient VOC observations, Atmos. Environ., 110, 144-150, doi:10.1016/j.atmosenv.2015.03.056.
Wang, J. S., J. A. Logan, M. B. McElroy, B. N. Duncan, I. A. Megretskaia, and R. M. Yantosca (2004), A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997, Global Biogeochem. Cycles, 18, GB3011, doi:10.1029/2003GB002180.
Warneke, C., et al. (2014), Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: Oil and gas well pad emissions compared to ambient air composition, Atmos. Chem. Phys., 14, 10,977-10,988, doi:10.5194/acp-14-10977-2014.
Wiacek, A., J. R. Taylor, K. Strong, R. Saari, T. E. Kerzenmacher, N. B. Jones, and D. W. T. Griffith (2007), Ground-based solar absorption FTIRspectroscopy: Characterization of retrievals and first results from a novel optical design instrument at a new NDACC complementary station, J. Atmos. Oceanic Tech., 24(3), 432-448, doi:10.1175/jtech1962.1.
Wofsy, S. C., et al. (2012), HIPPO Combined Discrete Flask and GC Sample GHG, Halo-, Hydrocarbon Data (R_20121129), edited by O. R. N. L. Carbon Dioxide Inf. Anal. Cent., Oak Ridge, Tenn., doi:10.3334/CDIAC/hippo_012.
Xiao, Y. P., D. J. Jacob, J. S. Wang, J. A. Logan, P. I. Palmer, P. Suntharalingam, R. M. Yantosca, G. W. Sachse, D. R. Blake, and D. G. Streets (2004), Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow, J. Geophys. Res., 109, D15S16, doi:10.1029/2003JD004475.
Xiao, Y. P., J. A. Logan, D. J. Jacob, R. C. Hudman, R. M. Yantosca, and D. R. Blake (2008), Global budget of ethane and regional constraints on US sources, J. Geophys. Res., 113, D21306, doi:10.1029/2007JD009415.
Yacovitch, T. I., and S. C. Herndon (2014), TILDAS ethane quality assurance document, discover AQ Denver 2014.
Yevich, R., and J. A. Logan (2003), An assessment of biofuel use and burning of agricultural waste in the developing world, Global Biogeochem. Cycles, 17(4), 1095, doi:10.1029/2002GB001952.
Zimmerman, P. R., J. P. Greenberg, and C. E. Westberg (1988), Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon Boundary Layer, J. Geophys. Res., 93, 1407-1416, doi:10.1029/JD093iD02p01407.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.