Molecular logic; Probabilitic computing; Single atom transistor
Abstract :
[en] Exploiting the potential of nanoscale devices for logic processing requires the implementation of computing functionalities departing from the conventional switching paradigm. We report on the design and the experimental realisation of a probabilistic finite state machine in a single phosphorus donor atom placed in a silicon matrix electrically addressed and probed by Scanning Tunneling Spectroscopy (STS). The single atom logic unit simulates the flow of visitors in a maze whose topology is determined by the dynamics of the electronic transport through the states of the dopant. By considering the simplest case of a unique charge state for which three electronic states can be resolved, we demonstrate an efficient solution of the following problem: in a maze of four connected rooms, what is the optimal combination of door opening rates in order to maximize the time that visitors spend in one specific chamber? The implementation takes advantage of the stochastic nature of electron tunneling while the output remains the macroscopic current whose reading can be realized with standard techniques and does not require single electron sensitivity.
Research Center/Unit :
Chimie Physique Théorique
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Fresch, Barbara; University of Padova > Chemistry
Bocquel, Juanita; University of New South Wales > School of Physics
Rogge, Sven; University of New South Wales > Schoolf of Physics
Levine, Raphaël David; Hebew University of Jerusalem > Institute of Chemistry
Remacle, Françoise ; Université de Liège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Language :
English
Title :
A Probabilistic Finite State Logic Machine Realized Experimentally on a Single Dopant Atom
Publication date :
2017
Journal title :
Nano Letters
ISSN :
1530-6984
eISSN :
1530-6992
Publisher :
ACS
Volume :
17
Pages :
1846
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 317707 - MULTI - MULTI-valued and parallel molecular logic
Name of the research project :
Multi valued and parallel molecular logic
Funders :
DG RDT - Commission Européenne. Direction Générale de la Recherche et de l'Innovation [BE] CE - Commission Européenne [BE]
Carlton, D. B.; Emley, N. C.; Tuchfeld, E.; Bokor, J. Nano Lett. 2008, 8 ( 12 ) 4173-4178 10.1021/nl801607p
Fresch, B.; Hiluf, D.; Collini, E.; Levine, R. D.; Remacle, F. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 ( 43 ) 17183-17188 10.1073/pnas.1314978110
Fresch, B.; Cipolloni, M.; Yan, T. M.; Collini, E.; Levine, R. D.; Remacle, F. J. Phys. Chem. Lett. 2015, 6 ( 9 ) 1714-1718 10.1021/acs.jpclett.5b00514
Yan, T. M.; Fresch, B.; Levine, R. D.; Remacle, F. J. Chem. Phys. 2015, 143 ( 6 ) 064106 10.1063/1.4928066
Lee, S.; Lee, Y.; Song, E. B.; Wang, K. L.; Hiramoto, T. Appl. Phys. Lett. 2013, 102 ( 8 ) 083504 10.1063/1.4793564
Lee, C. K.; Kim, S. J.; Shin, S. J.; Choi, J. B.; Takahashi, Y. Appl. Phys. Lett. 2008, 92 ( 9 ) 093101 10.1063/1.2888164
Kim, S.-J.; Lee, C.-K.; Chung, R.-S.; Park, E.-S.; Shin, S.-J.; Choi, J.-B.; Yu, Y.-S.; Kim, N.-S.; Lee, H. G.; Park, K.-H. IEEE Trans. Electron Devices 2009, 56 ( 5 ) 1048-1055 10.1109/TED.2009.2016399
Mol, J. A.; van der Heijden, J.; Verduijn, J.; Klein, M.; Remacle, F.; Rogge, S. Appl. Phys. Lett. 2011, 99 ( 26 ) 263109 10.1063/1.3669536
Klein, M.; Mol, J. A.; Verduijn, J.; Lansbergen, G. P.; Rogge, S.; Levine, R. D.; Remacle, F. Appl. Phys. Lett. 2010, 96 ( 4 ) 043107 10.1063/1.3297906
Klymenko, M. V.; Remacle, F. J. Appl. Phys. 2014, 116 ( 16 ) 164316 10.1063/1.4900995
Kim, S. J.; Lee, J. J.; Kang, H. J.; Choi, J. B.; Yu, Y.-S.; Takahashi, Y.; Hasko, D. G. Appl. Phys. Lett. 2012, 101 ( 18 ) 183101 10.1063/1.4761935
Yan, Y.; Mol, J. A.; Verduijn, J.; Rogge, S.; Levine, R. D.; Remacle, F. J. Phys. Chem. C 2010, 114 ( 48 ) 20380-20386 10.1021/jp103524d
Fresch, B.; Verduijn, J.; Mol, J. A.; Rogge, S.; Remacle, F. EPL 2012, 99 ( 2 ) 28004 10.1209/0295-5075/99/28004
Cervera, J.; Manzanares, J. A.; Mafe, S. Nanotechnology 2011, 22 ( 43 ) 435201 10.1088/0957-4484/22/43/435201
Cervera, J.; Manzanares, J. A.; Mafe, S. Nanotechnology 2009, 20 ( 46 ) 465202 10.1088/0957-4484/20/46/465202
Fresch, B.; Hanozin, E.; Dufour, F.; Remacle, F. Eur. Phys. J. D 2012, 66 ( 12 ) 30575 10.1140/epjd/e2012-30575-4
Fresch, B.; Boyen, H. G.; Remacle, F. Nanoscale 2012, 4 ( 14 ) 4138-4147 10.1039/c2nr30581j
Lansbergen, G. P. Nat. Nanotechnol. 2012, 7 ( 4 ) 209-210 10.1038/nnano.2012.23
Sadek, A. S.; Nikoli, K.; Forshaw, M. Nanotechnology 2004, 15 ( 1 ) 192 10.1088/0957-4484/15/1/037
Jie, H.; Orshansky, M. In Approximate computing: An emerging paradigm for energy-efficient design; Test Symposium (ETS), 2013 18th IEEE European, May 27-30, 2013; pp 1-6.
Kish, L. B. Phys. Lett. A 2009, 373 ( 10 ) 911-918 10.1016/j.physleta.2008.12.068
Naruse, M.; Aono, M.; Kim, S.-J.; Kawazoe, T.; Nomura, W.; Hori, H.; Hara, M.; Ohtsu, M. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86 ( 12 ) 125407 10.1103/PhysRevB.86.125407
Rabin, M. O. Information and Control 1963, 6 ( 3 ) 230-245 10.1016/S0019-9958(63)90290-0
Usman, M.; Bocquel, J.; Salfi, J.; Voisin, B.; Tankasala, A.; Rahman, R.; Simmons, M. Y.; Rogge, S.; Hollenberg, L. C. L. Nat. Nanotechnol. 2016, 11 ( 9 ) 763-768 10.1038/nnano.2016.83
Ono, Y.; Fujiwara, A.; Nishiguchi, K.; Inokawa, H.; Takahashi, Y. J. Appl. Phys. 2005, 97 ( 3 ) 031101 10.1063/1.1843271
Dellow, M. W.; Beton, P. H.; Langerak, C. J. G. M.; Foster, T. J.; Main, P. C.; Eaves, L.; Henini, M.; Beaumont, S. P.; Wilkinson, C. D. W. Phys. Rev. Lett. 1992, 68 ( 11 ) 1754-1757 10.1103/PhysRevLett.68.1754
Furia, C. A.; Mandrioli, D.; Morzenti, A.; Rossi, M. Modeling Time in Computing; Springer, 2012.
Fuechsle, M.; Miwa, J. A.; Mahapatra, S.; Ryu, H.; Lee, S.; Warschkow, O.; Hollenberg, L. C. L.; Klimeck, G.; Simmons, M. Y. Nat. Nanotechnol. 2012, 7 ( 4 ) 242-246 10.1038/nnano.2012.21