Stinckens, A.; Laboratory of Livestock Physiology, Immunology and Genetics, Department of Biosystems, KULeuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
Schroyen, Martine ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Zootechnie
Peeters, L.; Laboratory of Livestock Physiology, Immunology and Genetics, Department of Biosystems, KULeuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
Janssens, S.; Laboratory of Livestock Physiology, Immunology and Genetics, Department of Biosystems, KULeuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
Buys, N.; Laboratory of Livestock Physiology, Immunology and Genetics, Department of Biosystems, KULeuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
Title :
Quantitative trait mutations in cattle, sheep and pigs: A review
Publication date :
2010
Journal title :
CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources
Andersson L. Genetic dissection of phenotypic diversity in farm animals. Nature Reviews Genetics 2001;2:130-8. (Pubitemid 33674004)
Williams JL. The use of marker-assisted selection in animal breeding and biotechnology. Revue Scientifique et Technique (International Office of Epizootics) 2005;24:379-91. (Pubitemid 41112554)
Andersson L, Georges M. Domestic-animal genomics: deciphering the genetics of complex traits. Nature Reviews Genetics 2001;5:202-12. (Pubitemid 38294549)
Mackay T F C. Quantitative trait loci in Drosophila. Nature Reviews Genetics 2001;2:11-21.
Andersson L. Genome-wide association analysis in domestic animals: a powerful approach for genetic dissection of trait loci. Genetica 2009;136:341-9.
Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics 2009;10:381-91.
Georges M. Mapping, fine mapping and molecular dissection of quantitative trait loci in domestic animals. Annual Review of Genomics and Human Genetics 2007;8:131-62.
Harmegnies N, Farnir F, Davin F, Buys N, Georges M, Coppieters W. Measuring the extent of linkage disequilibrium in commercial pig populations. Animal Genetics 2006;37:225-31. (Pubitemid 43806489)
Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005;438:803-19. (Pubitemid 41753059)
De Roos A P W, Hayes BJ, Spelman R, Goddard ME. Linkage disequilibrium and persistence of phase in Holstein Freisian, Jersey and Angus cattle. Genetics 2008;179:1503-12.
MacEachern S, Hayes BJ, McEwan J, Goddard ME. An examination of positive selection and changing effective population size in Angus and Holstein cattle populations (Bos taurus) using a high density SNP genotyping platform and the contribution of ancient polymorphism to genomic diversity in domestic cattle. BMC Genomics 2009;10:181.
Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz N H C, Zody MC, Anderson N, et al. Efficient mapping of Mendelian traits in dogs through genome-wide association. Nature Genetics 2007;39:1321-8. (Pubitemid 350034994)
Charlier C, Coppieters W, Rollin F, Desmecht D, Agerholm JS, Cambisano N, et al. Highly effective SNP-based association mapping and management of recessive defects in livestock. Nature Genetics 2008;40:449-54. (Pubitemid 351450886)
Yu TP, Tuggle CK, Schmitz CB, Rothschild MF. Association of PIT1 polymorphisms with growth and carcass traits in pigs. Journal of Animal Science 1995;73:1282-8.
Ron M, Weller JI. From QTL to QTN identification in livestock - winning by points rather than by knock-out: a review. Animal Genetics 2007;38:429-39. (Pubitemid 47480951)
Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler SE, et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 1991;253:448-51. (Pubitemid 21917175)
Grobet L, Martin L H R, Poncelet D, Pirottin D, Brouwers B, Riquet J, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics 1997;17:71-4. (Pubitemid 27377534)
Kambadur R, Sharma M, Smith T P L, Bass JJ. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research 1997;7:910-5.
McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the USA 1997;94:12457-61. (Pubitemid 27492550)
Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygous dogs. PLoS Genetics 2007;3:e79.
Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, Pasquino AT, et al. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 1995;139:907-20.
Farnir F, Coppieters W, Arranz J, Berzi P, Cambisano N, Grisart B, et al. Extensive genome-wide linkage disequilibrium in cattle. Genome Research 2000;10:220-7. (Pubitemid 30119590)
Van Laere A, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 2003;425:832-6. (Pubitemid 37351466)
Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 2000;288:1248-51. (Pubitemid 30367203)
Andersson L. Identification and characterization of AMPKγ 3 mutations in the pig. Biochemical Society Transactions 2003;31:232-5. (Pubitemid 36241435)
Szabó G, Dallmann G, Müller G, Patthy L, Soller M, Varga L. A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mammalian Genome 1998;9:671-2. (Pubitemid 28355333)
Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics 2006;38:813-8. (Pubitemid 43980603)
Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, et al. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research 2001;12:222-31. (Pubitemid 34162989)
Cockett NE, Jackson SP, Shay TL, Nielsen D, Moore SS, Steele MR, et al. Chromosomal localisation of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proceedings of the National Academy of Sciences of the USA 1994;91:3019-23. (Pubitemid 24130166)
Charlier C, Segers K, Karim L, Shay T, Gyapay G, Cockett N, et al. The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status. Nature Genetics 2001;27:367-9. (Pubitemid 32268413)
Wilson T, Wu X, Juengel JL, Ross IK, Lumsden JM, Lord EA, et al. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulose cells. Biology of Reproduction 2001;64:1225-35. (Pubitemid 32239195)
Meuwissen T H E, Goddard ME. Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genetics Selection Evolution 2004;36:261-79. (Pubitemid 38630134)
Lister D. The physiology and biochemistry of the porcine stress syndrome. In: Tarrant PV, Eikelboom G, Monin G, editors. Evaluation and Control of Meat Quality in Pigs. Martinus Nijfhoff Publishers, Boston, MA; 1987. p. 3-16.
Enfalt A, Lundström K, Hansson I, Johansen S, Nystrom P. Comparison of non-carriers and heterozygous carriers of the RN7 allele for carcass composition, muscle distribution and technological meat quality in Hampshire-sired pigs. Livestock Production Science 1997;47:221-9. (Pubitemid 127391818)
Milan D, Woloszyn N, Yerle M, Le Roy P, Bonnet M, Riquet J, et al. Accurate mapping of the "acid meat" RN gene on genetic and physical maps of pig chromosome 15. Mammalian Genome 1996;7:47-51. (Pubitemid 126439708)
Lindahl G, Enfält A, Von Seth G, Josell A, Hedebro-Velander I, Andersen HJ, et al. A second mutant allele (V199I) at the PRKAG (RN) locus - I. Effect on technological meat quality of pork loin. Meat Science 2004;66:609-19. (Pubitemid 38000618)
Lindahl G, Enfält A, Von Seth G, Joseli A, Hedebro-Velander I, Andersen HJ, et al. A second mutant allele (V199I) at the PRKAG (RN) locus - II. Effect on colour characteristics of pork loin. Meat Science 2004;66:609-19. (Pubitemid 38000618)
Andersson-Eklund L, Marklund L, Lundström K, Haley CS, Andersson K, Hansson I, et al. Mapping quantitative trait loci for carcass and meat quality traits in a wild boar × Large White intercross. Journal of Animal Science 1998;76:694-700. (Pubitemid 128437917)
Jeon JT, Carlborg Ö, Törnsten A, Giuffra E, Amarger V, Chardon P, et al. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics 1999;21:157-8. (Pubitemid 29070357)
Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, et al. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nature Genetics 1999;21:155-6. (Pubitemid 29070356)
Florini JR, Magri KA, Ewton DZ, James PL, Grindstaff K, Rotwein PS. 'Spontaneous' differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. Journal of Biological Chemistry 1991;266:15917-23. (Pubitemid 21907745)
Oksbjerg N, Gondret F, Vestergaard M. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domestic Animal Endocrinology 2004;27:219-40. (Pubitemid 39282915)
Oczkowicz M, Tyra M, Walinowicz K, Rózycki M, Rejduch B. Known mutation (A3072G) in intron 3 of the IGF2 gene is associated with growth and carcass composition in Polish pig breeds. Journal of Applied Genetics 2009;50:257-9.
Braunschweig MH, Van Laere AS, Buys N, Andersson L, Andersson G. IGF2 antisense transcript expression in porcine postnatal muscle is affected by a quantitative trait nucleotide in intron 3. Genomics 2004;84:1021-9. (Pubitemid 39469127)
Jackson SP, Miller MF and Green RD. The effect of a muscle hypertrophy gene on muscle weights of ram lambs. Proceedings, Western Section, American Society of Animal Science 1993;44:196-8.
Jackson SP, Miller MF, Green RD, Brdecko KS. Carcass characteristics of Rambouillet ram lambs with genetic muscle hypertrophy. Proceedings, Western Section, American Society of Animal Science 1993;44:167-9.
Freking BA, Murphy SK, Wylie AA, Rhodes SJ, Keele JW, Leymaster KA, et al. Identification of the single base change causing the callipyge muscle hyperthrophy phenotype, the only known example of polar overdominance in mammals. Genome Research 2002;12:1496-506. (Pubitemid 35175087)
Georges M, Charlier C, Cockett N. The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends in Genetics 2003;19:248-52. (Pubitemid 36507005)
Grobet L, Poncelet D, Royo LJ, Brouwers B, Pirottin, Michaux C, et al. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian Genome 1998;9:210-3. (Pubitemid 28165425)
Karim L, Coppieters W, Grobet L, Valentini A, Georges M. Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Animal genetics 2000;31:396-9. (Pubitemid 32100255)
Marchitelli C, Savarese MC, Crisà A, Nardone A, Marsan PA, Valentini A. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mammalian Genome 2003;14:392-5. (Pubitemid 36623546)
Boman IA, Klemetsdal G, Blichfeldt T, Nafstad O, Våge DI. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries). Animal genetics 2009;40:418-22.
Schuelke M, Wagner KR, Stolz LE, Hübner C, Riedel T, Kömen W, et al. Myostatin mutation associated with gross muscle hyperthrophy in a child. New England Journal of Medicine 2004;350:2682-8. (Pubitemid 38788003)
Coppieters W, Riquet J, Arranz JJ, Berzi P, Cambisano N, Grisart B, et al. A QTL with major effect on milk yield and composition maps to bovine chromosome 14. Mammalian Genome 1998;9:540-4. (Pubitemid 28323764)
Winter A, Krämer W, Werner F A O, Kollers S, Kata S, Durstewitz G, et al. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitativ trait locus for milk fat content. Proceedings of the National of Academy of Sciences of the USA 2002;99:9300-5. (Pubitemid 34764608)
Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, Kvasz A, et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences of the USA 2004;101:2398-403. (Pubitemid 38269323)
Kühn C, Thaller G, Winter A, Bininda-Emonds O R P, Kaupe B, Erhardt G, et al. Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics 2004;167:1873-81. (Pubitemid 39265923)
Cohen-Zinder M, Seroussi E, Larkin DM, Loor JL, Everts-Van der Wind A, Lee J, et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Research 2005;15:936-44. (Pubitemid 40994213)
Jonker JW, Merino G, Musters S, Van Herwaarden AE, Bolscher E, Wagenaar E, et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nature Medicine 2004;11:127-9.
Olsen HG, Nilsen H, Hayes B, Berg RR, Svendsen M, Lien S, et al. Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle. BMC Genetics 2007;8:32.
Piper LR, Bindon BM. The Booroola Merino and the performance of medium non-peppin crosses at Armidale. In Piper LR, Bindon BM, Nethery RD, editors. The Booroola Merino, Proceedings of a Workshop, Armidale, 24-25 August 1980, CSIRO; 1982, pp. 9-19.
Souza C J H, MacDougall C, Campbell BK, McNeilly AS, Baird DT. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. Journal of Endocrinology 2001;169(2):R1-6. (Pubitemid 32447622)
Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P, Lanneluc I, et al. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes. Proceedings of the National Academy of Sciences of the USA 2001;98(9):5104-9. (Pubitemid 32397090)
Fabre S, Pierre A, Mulsant P, Bodin L, Di Pasquale E, Persani L, et al. Regulation of ovulation rate in mammals: contribution of sheep genetic models. Reproductive Biology and Endocrinology 2006;4:20.
Galloway SM, McNatty KP, Cambridge LM, Laitinen M P E, Juengel JL, Jokiranta S, et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nature Genetics 2000;25(3):279-83. (Pubitemid 30437312)
Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep. Biology of Reproduction 2004;70(4):900-9. (Pubitemid 38387698)
Davis GH. Major genes affecting ovulation rate in sheep. Genetic Selection Evolution 2005;37(Suppl. 1):S11-23. (Pubitemid 40078320)
McNatty KP, Galloway SM, Wilson T, Smith P, Hudson NL, O'Connell A, et al. Physiological effects of major genes affecting ovulation rate in sheep. Genetics Selection Evolution 2005;37(Suppl. 1):S25-38. (Pubitemid 40084147)
Thomsen B, Horn P, Panitz F, Bendixen E, Petersen AH, Holm LE, et al. A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Research 2006;16:97-105. (Pubitemid 43048938)
Baylis M, Goldmann W. The genetics of scrapie in sheep and goats. Current Molecular Medicine 2004;4:385-96. (Pubitemid 38787007)
Sander P, Hamann H, Drögemüller C, Kashkevich K, Schiebel K, Leeb T. Bovine prion protein gene (PRNP) promotor polymorphisms modulate PRNP expression and may be responsible for differences in bovine spongiform encephalopathy susceptibility. Journal of Biological Chemistry 2005;280:37408-14. (Pubitemid 41642347)
Nicholson EM, Brunelle BW, Richt JA, Kehrli ME, Greenlee JJ. Identification of a heritable polymorphism in bovine PRNP associated with genetic transmissible spongiform encephalopathy: evidence of heritable BSE. PLoS One 2008;3:e2912.
Prusiner SB. Research on scrapie. Lancet 1982;2:494-5.
Konold T, Davis A, Bone G, Bracegirdle J, Everitt S, Chaplin M, et al. Clinical findings in two cases of atypical scrapie in sheep: a case report. BMC Veterinary Research 2007;3:2.
Goldmann W, Hunter N, Foster JD, Salbaum JM, Beyreuther K, Hope J. Two alleles of a neural protein gene linked to scrapie in sheep. Proceedings of the National Academy of Sciences of the USA 1990;87:2476-80.
Goldmann W, Hunter N, Benson G, Foster JD, Hope J. Different scrapie-associated fibril proteins (PrP) are encoded by lines of sheep selected for different alleles of the Sip gene. Journal of General Virology 1991;72:2411-7.
Belt P B G M, Muileman IH, Schreuder B E C, Bos-De Ruijter JB, Gielkens A L J, Smits MA. Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. Journal of General Virology 1995;76:509-17.
Ikeda T, Horiuchi M, Ishiguro N, Muramatsu Y, Kai-Uwe GD, Shinagawa M. Amino acid polymorphisms of PrP with reference to onset of scrapie in Suffolk and Corriedale sheep in Japan. Journal of General Virology 1995;76:2577-81.
Kutzer T, Pfeiffer I, Brenig B. Identification of new allelic variants in the ovine prion protein (PrP) gene. Journal of Animal Breeding and Genetics 2002;119:201-8.
Tkacikova L, Hanusovska E, Novak M, Arvayova M, Mikula I. The PrP genotype of sheep of the improved Valachian breed. Folia Microbiologica 2003;48:269-76. (Pubitemid 37030433)
Houston EF, Halliday SI, Jeffrey M, Goldmann W, Hunter N. New Zealand sheep with scrapie-susceptible PrP genotypes succumb to experimental challenge with a sheep-passaged scrapie isolate (SSBP/1). Journal of General Virology 2002;83:1247-50. (Pubitemid 34477298)
Juling K, Schwarzenbacher H, Williams JL, Fries R. A major genetic component of BSE susceptibility. BMC Biology 2006;4:33.
Saunders GC, Cawthraw S, Mountjov SJ, Hope J, Windl Q. PrP genotypes of atypical scrapie cases in Great Britain. Journal of General Virology 2006;87:3141-9. (Pubitemid 44608349)
Haase B, Doherr MG, Seuberlich T, Drögemuller C, Dolf G, Nicken P, et al. PRNP promoter polymorphisms are associated with BSE susceptibility in Swiss and German cattle. BMC Genetics 2007;8:15.
Richt JA, Hall SM. BSE case associated with prion protein gene mutation. PloS Pathogens 2008;4:e1000156.
Nagahata H. Bovine leukocyte adhesion deficiency (BLAD): a review. Journal of Veterinary Medical Science 2004;66:1475-82. (Pubitemid 41380173)
Shuster DE, Kehrli ME, Ackermann MR, Gilbert RO. Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proceedings of the National Academy of Sciences of the USA 1992;89:9225-9.
Kijas J M H, Bauer TR, Gäfvert S, Marklund S, Trowald-Wigh G, Johannisson A, et al. A missense mutation in the β-2 integrin gene (ITGB2) causes canine leukocyte adhesion deficiency. Genomics 1999;61:101-7. (Pubitemid 29487626)
Fasquelle C, Sartelet A, Li W, Dive M, Tamma N, et al. Balancing selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak of the crooked tail syndrome in Belgian Blue Cattle. PLos Genet 2009;5(9):e1000666. doi:10.1371/journal.pgen. 1000666.
Marron BM, Robinson JL, Gentry PA, Beever E. Identification of a mutation associated with factor XI deficiency in Holstein cattle. Animal Genetics 2004;35:454-6. (Pubitemid 39623217)
Gurgul A, Rubis D, Slota E. Identification of carriers of the mutation causing coagulation factor XI deficiency in Polish Holstein-Friesian cattle. Journal of Applied Genetics 2009;50:149-52.
Meuwissen T. Genomic selection: marker assisted selection on a genome wide scale. Journal of Animal Breeding and Genetics 2007;124:321-2. (Pubitemid 350231123)
Dekkers JC. Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science 2004;82:E313-28.
Meuwissen T H E, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001;157:1819-29. (Pubitemid 32298846)
Goddard ME, Hayes BJ. Genomic selection. Journal of Animal Breeding and Genetics 2007;124:323-30. (Pubitemid 350231124)