Knetter, S. M.; Department of Animal Science, Iowa State University, 2255 Kildee Hall Ames, Ames, IA, United States
Bearson, S. M. D.; National Animal Disease Center, USDA-ARS, Ames, IA, United States
Huang, T.-H.; Department of Animal Science, Iowa State University, 2255 Kildee Hall Ames, Ames, IA, United States
Kurkiewicz, D.; Department of Statistics, Iowa State University, Ames, IA, United States
Schroyen, Martine ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Zootechnie
Nettleton, D.; Department of Statistics, Iowa State University, Ames, IA, United States
Berman, D.; Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD, United States
Cohen, V.; Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD, United States
Lunney, J. K.; Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD, United States
Ramer-Tait, A. E.; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
Wannemuehler, M. J.; Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
Tuggle, C. K.; Department of Animal Science, Iowa State University, 2255 Kildee Hall Ames, Ames, IA, United States
Language :
English
Title :
Salmonella enterica serovar Typhimurium-infected pigs with different shedding levels exhibit distinct clinical, peripheral cytokine and transcriptomic immune response phenotypes
Publication date :
2015
Journal title :
Innate Immunity
ISSN :
1753-4259
eISSN :
1753-4267
Publisher :
SAGE Publications Ltd
Volume :
21
Issue :
3
Pages :
227-241
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
USDA NIFA - United States. Department of Agriculture. National Institute of Food and Agriculture
Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States - major pathogens. Emerg Infect Dis. 2011; 17: 7-15
Economic Research Service. Foodborne illness cost calculator: Salmonella. Economic Research Service. Available at: http://webarchives.cdlib.org/sw1rf5mh0k/http://www.ers.usda.gov/Data/FoodborneIllness/ (2011).
Miller GY, Liu X, McNamara PE, Barber DA. Influence of Salmonella in pigs preharvest and during pork processing on human health costs and risks from pork. J Food Prot. 2005; 68: 1788-98
Haley CA, Dargatz DA, Bush EJ, et al. Salmonella prevalence and antimicrobial susceptibility from the National Animal Health Monitoring System Swine 2000 and 2006 studies. J Food Prot. 2012; 75: 428-36
Bearson SM, Bearson BL Perspectives on food-safety issues of animal-derived foods. Ricke SC Jones FT, ed. Fayetteville, AR: University of Arkansas Press; 2010: 35-48.
Rostagno MH, Callaway TR. Pre-harvest risk factors for Salmonellaenterica in pork production. Food Res Int. 2012; 45: 634-40
Farzan A, Friendship RM. A clinical field trial to evaluate the efficacy of vaccination in controlling Salmonella infection and the association of Salmonella-shedding and weight gain in pigs. Can J Vet Res. 2010; 74: 258-63
McKean JD, Hurd HS, Larsen S, et al. Impact of commercial pre-harvest processes on the prevalence of Salmonella enterica in cull sows. Berl Munch Tierarztl Wochenschr. 2001; 114: 353-5
Hotes S, Traulsen I, Krieter J. The additional costs of segregated transport to slaughter to decrease Salmonella prevalence in pork - a simulation study. Prev Vet Med. 2012; 104: 174-8
Food and Agriculture Organization of the United Nations. Food outlook, http://www.fao.org/docrep/016/al993e/al993e00.pdf (accessed 21 February 2014).
Gopinath S, Carden S, Monack D. Shedding light on Salmonella carriers. Trends Microbiol. 2012; 20: 320-7
Hobbie S, Chen LM, Davis RJ, Galan JE. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J Immunol. 1997; 159: 5550-9
Mani V, Weber TE, Baumgard LH, Gabler NK. Growth and Development Symposium: Endotoxin, inflammation, and intestinal function in livestock. J Anim Sci. 2012; 90: 1452-65
Uthe JJ, Wang Y, Qu L, et al. Correlating blood immune parameters and a CCT7 genetic variant with the shedding of Salmonella enterica serovar Typhimurium in swine. Vet Microbiol. 2009; 135: 384-8
Huang TH, Uthe JJ, Bearson SM, et al. Distinct peripheral blood RNA responses to Salmonella in pigs differing in Salmonella shedding levels: intersection of IFNG, TLR and miRNA pathways. Plos One. 2011; 6: e28768 - e28768
Bearson SM, Allen HK, Bearson BL, et al. Profiling the gastrointestinal microbiota in response to Salmonella: Low versus high Salmonella shedding in the natural porcine host. Infect Gen Evol. 2013; 16: 330-40
Freeman TC, Ivens A, Baillie JK, et al. A gene expression atlas of the domestic pig. BMC Biol. 2012; 10: 90-90
Dawson HD, Beshah E, Nishi S, et al. Localized multigene expression patterns support an evolving Th1/Th2-like paradigm in response to infections with Toxoplasma gondii and Ascaris suum. Infect Immun. 2005; 73: 1116-28
Royaee AR, Husmann RJ, Dawson HD, et al. Deciphering the involvement of innate immune factors in the development of the host response to PRRSV vaccination. Vet Immunol Immunopathol. 2004; 102: 199-216
Lawson S, Lunney J, Zuckermann F, et al. Development of an 8-plex Luminex assay to detect swine cytokines for vaccine development: assessment of immunity after porcine reproductive and respiratory syndrome virus (PRRSV) vaccination. Vaccine. 2010; 28: 5356-64
Lunney JK, Fritz ER, Reecy JM, et al. Interleukin-8, interleukin-1beta, and interferon-gamma levels are linked to PRRS virus clearance. Viral Immunol. 2010; 23: 127-34
Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4: 249-64
Smyth GK Bioinformatics and computational biology solutions using R and Bioconductor. Gentleman R Carey V Dudoit S, ed. New York: Springer; 2005: 397-420.
Storey JD. A direct approach to false discovery rates. J Roy Stat Soc B. 2002; 64: 479-98
Nettleton D, Hwang JTG, Caldo RA, Wise RP. Estimating the number of true null hypotheses from a histogram of p values. J Agr Biol Envir St. 2006; 11: 337-56
Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997; 53: 983-97
Balaji R, Wright KJ, Hill CM, et al. Acute phase responses of pigs challenged orally with Salmonella typhimurium. J Anim Sci. 2000; 78: 1885-91
Bearson BL, Bearson SM, Lee IS, Brunelle BW. The Salmonella enterica serovar Typhimurium QseB response regulator negatively regulates bacterial motility and swine colonization in the absence of the QseC sensor kinase. Microb Pathog. 2010; 48: 214-9
Rostagno MH, Eicher SD, Lay Jr. Immunological, physiological, and behavioral effects of Salmonellaenterica carriage and shedding in experimentally infected finishing pigs. Foodborne Pathog Dis. 2011; 8: 623-30
Santos RL, Raffatellu M, Bevins CL, et al. Life in the inflamed intestine, Salmonella style. Trends Microbiol. 2009; 17: 498-506
Vladimer GI, Marty-Roix R, Ghosh S, et al. Inflammasomes and host defenses against bacterial infections. Curr Opin Microbiol. 2013; 16: 23-31
Stabel TJ, Fedorka-Cray PJ, Gray JT. Tumor necrosis factor-alpha production in swine after oral or respiratory challenge exposure with live Salmonella typhimurium or Salmonella choleraesuis. Am J Vet Res. 1995; 56: 1012-18
Collado-Romero M, Arce C, Ramirez-Boo M, et al. Quantitative analysis of the immune response upon Salmonella typhimurium infection along the porcine intestinal gut. Vet Res. 2010; 41: 23-23
Furze RC, Rankin SM. Neutrophil mobilization and clearance in the bone marrow. Immunology. 2008; 125: 281-8
Akgul C, Moulding DA, Edwards SW. Molecular control of neutrophil apoptosis. FEBS Lett. 2001; 487: 318-22
Windhagen A, Anderson DE, Carrizosa A, et al. IL-12 induces human T cells secreting IL-10 with IFN-gamma. J Immunol. 1996; 157: 1127-31
Oltmanns U, Schmidt B, Hoernig S, et al. Increased spontaneous interleukin-10 release from alveolar macrophages in active pulmonary sarcoidosis. Exp Lung Res. 2003; 29: 315-28
Winter SE, Thiennimitr P, Nuccio SP, et al. Contribution of flagellin pattern recognition to intestinal inflammation during Salmonellaenterica serotype typhimurium infection. Infect Immun. 2009; 77: 1904-16
Murphy K, Travers P, Walport M, Janeway C Janeway's immunobiology. 8 th ed. New York: Garland Science, 2012. New York: Garland Science; 2012:
Lalmanach A-C, Lantier F. Host cytokine response and resistance to Salmonella infection. Microbes Infect. 1999; 1: 719-26
Hyland KA, Kohrt L, Vulchanova L, Murtaugh MP. Mucosal innate immune response to intragastric infection by Salmonella enterica serovar Choleraesuis. Mol Immunol. 2006; 43: 1890-9
Trebichavsky I, Splichal I, Splichalova A, et al. Systemic and local cytokine response of young piglets to oral infection with Salmonellaenterica serotype Typhimurium. Folia Microbiol. 2003; 48: 403-7
Gonzalez-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons. Nature Rev Immunol. 2012; 12: 125-35
Decker T, Muller M, Stockinger S. The yin and yang of type I interferon activity in bacterial infection. Nature Rev Immunol. 2005; 5: 675-87
Tam MA, Rydstrom A, Sundquist M, Wick MJ. Early cellular responses to Salmonella infection: dendritic cells, monocytes, and more. Immunol Rev. 2008; 225: 140-62
Seyfert VL, Allman D, He Y, Staudt LM. Transcriptional repression by the proto-oncogene BCL-6. Oncogene. 1996; 12: 2331-42
El Kasmi KC, Smith AM, Williams L, et al. Cutting edge: A transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway. J Immunol. 2007; 179: 7215-9
Rocha-Viegas L, Vicent GP, Baranao JL, et al. Glucocorticoids repress bcl-X expression in lymphoid cells by recruiting STAT5B to the P4 promoter. J Biol Chem. 2006; 281: 33959-70
Banchereau J, Pascual V, O'Garra A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat Immunol. 2012; 13: 925-31
Matta BM, Raimondi G, Rosborough BR, et al. IL-27 production and STAT3-dependent upregulation of B7-H1 mediate immune regulatory functions of liver plasmacytoid dendritic cells. J Immunol. 2012; 188: 5227-37
Greenwald RJ, Latchman YE, Sharpe AH. Negative co-receptors on lymphocytes. Curr Opin Immunol. 2002; 14: 391-6
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010; 32: 593-604
Murtaugh MP, Johnson CR, Xiao Z, et al. Species specialization in cytokine biology: is interleukin-4 central to the T(H)1-T(H)2 paradigm in swine?. Dev Comp Immunol. 2009; 33: 344-52
te Velde AA, Huijbens RJ, Heije K, et al. Interleukin-4 (IL-4) inhibits secretion of IL-1 beta, tumor necrosis factor alpha, and IL-6 by human monocytes. Blood. 1990; 76: 1392-7
Gautam S, Tebo JM, Hamilton TA. IL-4 suppresses cytokine gene expression induced by IFN-gamma and/or IL-2 in murine peritoneal macrophages. J Immunol. 1992; 148: 1725-30
Killeen N. T-cell regulation: Thy-1 - hiding in full view. Curr Biol. 1997; 7: R774-7
Conrad DM, Coombs MR, Furlong SJ, et al. Induction of CD4(+)CD25(+)Foxp3(-) regulatory T cells by Thy-1 stimulation of CD4(+) T cells. Immunol Cell Biol. 2012; 90: 248-52
Mulcahy H, O'Rourke KP, Adams C, et al. LST1 and NCR3 expression in autoimmune inflammation and in response to IFN-gamma, LPS and microbial infection. Immunogenetics. 2006; 57: 893-903
Rollinger-Holzinger I, Eibl B, Pauly M, et al. LST1: a gene with extensive alternative splicing and immunomodulatory function. J Immunol. 2000; 164: 3169-76
Chaussabel D, Pascual V, Banchereau J. Assessing the human immune system through blood transcriptomics. BMC Biol. 2010; 8: 84-84