Pilcher, C. M.; Department of Animal Science, Iowa State University, Ames, United States, Iowa State University, Ames, United States, Cargill Animal Nutrition, Brookville, OH, United States
Jones, C. K.; Department of Animal Science, Iowa State University, Ames, United States, Iowa State University, Ames, United States, Department of Grain Science and Industry, Kansas State University, Manhattan, United States
Schroyen, Martine ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Zootechnie
Severin, A. J.; Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, United States
Patience, J. F.; Department of Animal Science, Iowa State University, Ames, United States
Tuggle, C. K.; Department of Animal Science, Iowa State University, Ames, United States
Koltes, J. E.; Department of Animal Science, Iowa State University, Ames, United States
Title :
Transcript profiles in longissimus dorsi muscle and subcutaneous adipose tissue: A comparison of pigs with different postweaning growth rates
AOAC International. 2005. Official methods of analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Gaithersburg, MD
Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57:289-300.
Conn, C. S., and S. B. Qian. 2011. mTOR signaling in protein homeostasis: Less is more? Cell Cycle 10:1940-1947. doi:10.4161/cc.10.12.15858.
Corradetti, M. N., K. Inoki, and K.-L. Guan. 2005. The stressinducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J. Biol. Chem. 280:9769-9772. doi:10.1074/jbc.C400557200.
Davis, T. A., A. Suryawan, R. A. Orellana, H. V. Nguyen, and M. L. Fiorotto. 2008. Postnatal ontogeny of skeletal muscle protein synthesis in pigs. J. Anim. Sci. 86:E13-E18. doi:10.2527/jas.2007-0419.
Done, S. H., and D. J. Paton. 1995. Porcine reproductive and respiratory syndrome: Clinical disease, pathology and immunosuppression. Vet. Rec. 136:32-35. doi:10.1136/vr.136.2.32.
Erkens, T., M. Van Poucke, J. Vandesompele, K. Goossens, A. Van Zeveren, and L. J. Peelman. 2006. Development of a new set of reference genes for normalization of real-time RTPCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol. 6:41. doi:10.1186/1472-6750-6-41.
Ge, Y., and J. Chen. 2012. Mammalian target of rapamycin (mTOR) signaling network in skeletal myogenesis. J. Biol. Chem. 287:43928-43935. doi:10.1074/jbc.R43112.406942.
Huang, D. W., B. T. Sherman, and R. A. Lempicki. 2009a. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1-13. doi:10.1093/nar/gkn1923.
Huang, D. W., B. T. Sherman, and R. A. Lempicki. 2009b. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44-57. doi:10.1038/nprot.2008.211.
Huang, Y., S. Henry, R. Friendship, K. Schwartz, and J. Harding. 2011. Clinical presentation, case definition, and diagnostic guidelines for porcine periweaning failure to thrive syndrome. J. Swine Health Prod. 19:340-344.
Jones, C. K. 2012. Characterizing the fallback pig, Iowa State Univ., Ames, Iowa.
Jones, C. K., N. K. Gabler, R. G. Main, and J. F. Patience. 2012. Characterizing growth and carcass composition differences in pigs with varying weaning weights and postweaning performance. J. Anim. Sci. 90:4072-4080. doi:10.2527/jas.2011-4793.
Jones, C. K., D. M. Madson, R. G. Main, N. K. Gabler, and J. F. Patience. 2014. Poor weaning transition average daily gain in pigs is not correlated with pathological or immunological markers of enteric disease during a porcine reproductive and respiratory syndrome virus outbreak. J. Anim. Sci. 92:2568-2577. doi:10.2527/jas.2013-7159.
Jones, C. K., and J. F. Patience. 2014. Variation in nutrient digestibility and energy intake are key contributors to differences in postweaning growth performance. J. Anim. Sci. 92:2105-2115. doi:10.2527/jas.2013-6335.
Kamei, Y., S. Miura, M. Suzuki, Y. Kai, J. Mizukami, T. Taniguchi, K. Mochida, T. Hata, J. Matsuda, H. Aburatani, I. Nishino, and O. Ezaki. 2004. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem. 279:41114-41123. doi:10.1074/jbc.M400674200.
Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402-408. doi:10.1006/meth.2001.1262.
Lund, S. P., D. Nettleton, D. J. McCarthy, and G. K. Smyth. 2012. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat. Appl. Genet. Mol. Biol. 11:1544-6115. doi:10.1515/1544-6115.1826.
Miyazaki, M., and K. A. Esser. 2009. REDD2 is enriched in skeletal muscle and inhibits mTOR signaling in response to leucine and stretch. Am. J. Physiol. Cell Physiol. 296: C583-C592. doi:10.1152/ajpcell.00464.02008.
Moeser, A. J., C. V. Klok, K. A. Ryan, J. G. Wooten, D. Little, V. L. Cook, and A. T. Blikslager. 2007. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G173-G181. doi:10.1152/ajpgi.00197.2006.
Nikitin, A., S. Egorov, N. Daraselia, and I. Mazo. 2003. Pathway studio—The analysis and navigation of molecular networks. Bioinformatics. 19:2155-2157. doi:10.1093/bioinformatics/btg290.
Reyer, H., S. Ponsuksili, K. Wimmers, and E. Murani. 2013. Transcript variants of the porcine glucocorticoid receptor gene (NR3C1). Gen. Comp. Endocrinol. 189:127-133. 10.1016/j.ygcen.2013.1004.1038.
Sandri, M., C. Sandri, A. Gilbert, C. Skurk, E. Calabria, A. Picard, K. Walsh, S. Schiaffino, S. H. Lecker, and A. L. Goldberg. 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399-412. doi:10.1016/S0092-8674(04)00400-3.
Schakman, O., H. Gilson, and J. P. Thissen. 2008. Mechanisms of glucocorticoid-induced myopathy. J. Endocrinol. 197:1-10. doi:10.1677/JOE-07-0606.
Schakman, O., S. Kalista, C. Barbe, A. Loumaye, and J. P. Thissen. 2013. Glucocorticoid-induced skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 45:2163-2172. doi:10.1016/j.biocel.2013.05.036.
Schiaffino, S., K. A. Dyar, S. Ciciliot, B. Blaauw, and M. Sandri. 2013. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 280:4294-4314. doi:10.1111/febs.12253.
Spurlock, M. E., S. Q. Ji, R. L. Godat, J. L. Kuske, G. M. Willis, G. R. Frank, and S. G. Cornelius. 2001. Changes in the expression of uncoupling proteins and lipases in porcine adipose tissue and skeletal muscle during feed deprivation. J. Nutr. Biochem. 12:81-87. doi:10.1016/S0955-2863(00)00128-5.
Stitt, T. N., D. Drujan, B. A. Clarke, F. Panaro, Y. Timofeyva, W. O. Kline, M. Gonzalez, G. D. Yancopoulos, and D. J. Glass. 2004. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 14:395-403. doi:10.1016/S1097-2765(04)00211-4.
Storey, J. D., and R. Tibshirani. 2003. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100:9440-9445. doi:10.1073/pnas.1530509100.
Wang, X., and C. G. Proud. 2006. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21:362-369. doi:10.1152/physiol.00024.2006.
Wijtten, P. J., J. van der Meulen, and M. W. Verstegen. 2011. Intestinal barrier function and absorption in pigs after weaning: A review. Br. J. Nutr. 105:967-981. doi:10.1017/S0007114510005660.
Wu, A. L., J. H. Kim, C. Zhang, T. G. Unterman, and J. Chen. 2008. Forkhead box protein O1 negatively regulates skeletal myocyte differentiation through degradation of mammalian target of rapamycin pathway components. Endocrinology 149:1407-1414.
Wu, T. D., and S. Nacu. 2010. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873-881. doi:10.1093/bioinformatics/btq057.
Yeaman, S. J. 1990. Hormone-sensitive lipase—A multipurpose enzyme in lipid metabolism. Biochim. Biophys. Acta 1052:128-132. doi:10.1016/0167-4889(90)90067-N.
Zimmerman, J. J., K. J. Yoon, R. W. Wills, and S. L. Swenson. 1997. General overview of PRRSV: A perspective from the United States. Vet. Microbiol. 55:187-196. doi:10.1016/S0378-1135(96)01330-2.