Unpublished conference/Abstract (Scientific congresses and symposiums)
Synergistic observations of the giant planets with HST and JWST: Jupiter's auroral emissions
Grodent, Denis
2017Science with the Hubble and James Webb Space Telescopes V
 

Files


Full Text
grodent_presentation.pdf
Publisher postprint (9.91 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
HST; JWST; Jupiter; aurora; magnetosphere; Saturn
Abstract :
[en] The James Webb Space Telescope is perfectly suited to observe most Solar System objects, including the extended giant planets. Its high sensitivity, high spatial resolution, field of view, very high spectral resolution and wide spectral coverage all combine to make JWST a fantastic instrument that will result in significant advances and progress in most fields of Solar System exploration. Here, we focus on the case of Jupiter’s aurora for several reasons. 1) The auroral emissions on Jupiter are very intense, both in ultraviolet and in infrared. Each of these bandpasses is bringing complementary information on how Jupiter is interacting with its near and distant environment. 2) Even though Jupiter’s aurora appears to be responding to the conditions prevailing in the solar wind, contrary to the Earth it is a permanent emission that can also be observed on the sunlit side of the planet. 3) The NASA Juno mission is currently exploring the magnetosphere and the atmosphere of this planet with a suite of in situ and remote instruments, including an ultraviolet spectrograph (UVS) and an infrared imaging spectrograph (JIRAM). The Juno mission is gathering a broad scientific community that will foster the study of Jupiter’s system for several years. 4) A large HST program was allocated in support of the NASA Juno prime mission (GO-14634) and is currently providing us with regular movies of Jupiter’s ultraviolet aurora. They provide a global magnetospheric context for the different Juno instruments, as well as for the numerous ground based (infrared) and space based observatories participating to the Juno mission. 5) It is currently very difficult to plan truly simultaneous UV and IR observations, mainly because of the inherent limitations of Earth based infrared telescopes. As a result, comparisons of Jupiter’s auroral emissions rest on a very limited dataset. Nevertheless, they are suggesting similarities and discrepancies between IR and UV aurorae, the study of which would greatly benefit from synergistic observations with HST and JWST. 6) The case of Saturn’s aurora is as important, especially in view of the upcoming ‘Grand Finale’ of the Cassini mission, and all above arguments apply to Saturn as well. The case of Uranus and Neptune’s aurorae still belongs to the area of discovery and will take full advantage of JWST’s advanced capabilities.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Grodent, Denis  ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > STAR Institute / LPAP
Language :
English
Title :
Synergistic observations of the giant planets with HST and JWST: Jupiter's auroral emissions
Publication date :
20 March 2017
Event name :
Science with the Hubble and James Webb Space Telescopes V
Event organizer :
European Space Agnecy, Space Telescope Science Institute
Event place :
Venise, Italy
Event date :
20-24 mars 2017
By request :
Yes
Audience :
International
References of the abstract :
http://www.stsci.edu/institute/conference/hst5/scientific-program.pdf
Available on ORBi :
since 21 April 2017

Statistics


Number of views
64 (5 by ULiège)
Number of downloads
65 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi