This paper is published by the Royal Society and avalable in its final form on their website. It can also be obtained through a direct request using the link hereunder. The author version is available in open access.
All documents in ORBi are protected by a user license.
[en] Paedomorphosis is a major evolutionary process that bypasses metamorphosis and allows reproduction in larvae. In newts and salamanders, it can be facultative with paedomorphs retaining gills and metamorphs dispersing. The evolution of these developmental processes is thought to have been driven by the costs and benefits of inhabiting aquatic versus terrestrial habitats. In this context, we aimed at testing the hypothesis that climatic drivers affect phenotypic transition and the difference across sexes because sex-ratio is biased in natural populations. Through a replicated laboratory experiment, we showed that paedomorphic palmate newts (Lissotriton helveticus) metamorphosed at a higher frequency when water availability decreased and metamorphosed earlier when temperature increased in these conditions. All responses were sex-biased, and males were more prone to change phenotype than females. Our work shows how climatic variables can affect facultative paedomorphosis and support theoretical models predicting life on land instead of in water. Moreover, because males metamorphose and leave water more often and earlier than females, these results, for the first time, give an experimental explanation for the rarity of male paedomorphosis (the ‘male escape hypothesis’) and suggest the importance of sex in the evolution of paedomorphosis versus metamorphosis.
Research Center/Unit :
AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Sehnal F, Svacha P, Zrzavy J. 1996 Evolution of insect metamorphosis. In Metamorphosis postembryonic reprogramming of gene expression in amphibian and insect cells (eds LI Gilbert, JR Tata, BG Atkinson), pp. 3-58. San Diego, CA: Academic Press.
Garstang W. 1922 The theory of recapitulation: a critical re-statement of the biogenetic law. J. Linn. Soc. Zool. 35, 81-101. (doi:10.1111/j.1096-3642.1922.tb00464.x)
Gould SJ. 1977 Ontogeny and phylogeny. Cambridge, MA: Harvard University Press.
McKinney ML, McNamara KJ. 1991 Heterochrony. the evolution of ontogeny. New York, NY: Plenum Press.
McNamara JM. 2012 Heterochrony: the evolution of development. Evol. Educ. Outreach. 5, 203-218. (doi:10.1007/s12052-012-0420-3)
Garstang W. 1951 Larval forms and other zoological verses. Oxford, UK: Blackwell.
Denoël M, Whiteman HH, Joly P. 2005 Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biol. Rev. 80, 663-671. (doi:10.1017/S1464793105006858)
Whiteman HH. 1994 Evolution of facultative paedomorphosis in salamanders. Q Rev. Biol. 69, 205-221. (doi:10.1086/418540)
Roček Z. 1995 Heterochrony: response of amphibia to cooling events. Geolines (Praha) 3, 55-58.
Tihen JA. 1955 A new Pliocene species of Ambystoma, with remarks on other fossil ambystomatids. Contrib. Mus. Paleontol. Univ. Michigan. 12, 229-244.
Bonett RM, Steffen MA, Lambert SM, Wiens JJ, Chippindale PT. 2014 Evolution of paedomorphosis in plethodontid salamanders: ecological correlates and re-evolution of metamorphosis. Evolution 68, 466-482. (doi:10.1111/evo.12274)
Shaffer HB. 1984 Evolution in a paedomorphic lineage. I. An electrophoretic analysis of the Mexican ambystomatid salamanders. Evolution 38, 1194-1206. (doi:10.2307/2408628)
Bizer JR. 1978 Growth rates and size at metamorphosis of high elevation populations of Ambystoma tigrinum. Oecologia 34, 175-184. (doi:10.1007/BF00345165)
Sprules WG. 1974 The adaptive significance of paedogenesis in North American species of Ambystoma (Amphibia: Caudata): an hypothesis. Can. J. Zool. 52, 393-400. (doi:10.1139/z74-047)
Sexton OJ, Bizer JR. 1978 Life history patterns of Ambystoma tigrinum in montane Colorado. Am. Midl. Nat. 99, 101-118. (doi:10.2307/2424936)
Semlitsch RD. 1987 Paedomorphosis in Ambystoma talpoideum: effects of density, food, and pond drying. Ecology 68, 994-1002. (doi:10.2307/1938370)
Oromi N, Michaux J, Denoël M. 2016 High gene flow between alternative morphs and the evolutionary persistence of facultative paedomorphosis. Sci. Rep. 6, 32046. (doi:10.1038/srep32046)
Wells KD. 2007 The ecology and behavior of amphibians. Chicago, IL: The University of Chicago Press.
Gomez-Mestre I, Kulkarni S, Buchholz DR. 2013 Mechanisms and consequences of developmental acceleration in tadpoles responding to pond drying. PLoS ONE 8, e84266. (doi:10.1371/journal.pone.0084266)
Sprules WG. 1974 Environmental factors and the incidence of neoteny in Ambystoma gracile (Baird) (Amphibia: Caudata). Can. J. Zool. 52, 1545-1552. (doi:10.1139/z74-200)
Denoël M. 2003 How do paedomorphic newts cope with lake drying? Ecography 26, 405-410. (doi:10.1034/j.1600-0587.2003.03366.x)
Denoël M, Joly P. 2000 Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia: Caudata). Proc. R. Soc. Lond. B 267, 1481-1485. (doi:10.1098/rspb.2000.1168)
Bijlsma R, Loeschcke V. 2005 Environmental stress, adaptation and evolution: an overview. J. Evol. Biol. 18, 744-749. (doi:10.1111/j.1420-9101.2005.00962.x)
Vautard R et al. 2007 Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett. 34, L07711. (doi:10.1029/2006GL028001)
Mantyka-Pringle CS, Martin TG, Rhodes JR. 2012 Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biol. 18, 1239-1252. (doi:10.1111/j.1365-2486.2011.02593.x)
Griffiths RA, Sewell D, McCrea RS. 2010 Dynamics of a declining amphibian metapopulation: survival, dispersal and the impact of climate. Biol. Conserv. 143, 485-491. (doi:10.1016/j.biocon.2009.11.017)
Lowe WH. 2012 Climate change is linked to longterm decline in a stream salamander. Biol. Conserv. 145, 48-53. (doi:10.1016/j.biocon.2011.10.004)
McMenamin SK, Hadly EA, Wright C. 2008 Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. USA 105, 16988-16993. (doi:10.1073/pnas.0809090105)
McMenamin SK, Hadly EA. 2010 Developmental dynamics of Ambystoma tigrinum in a changing landscape. BMC Ecol. 10, 10. (doi:10.1186/1472-6785-10-10)
Denoël M, Ficetola GF. 2014 Heterochrony in a complex world: disentangling environmental processes of facultative paedomorphosis in an amphibian. J. Anim. Ecol. 83, 606-615. (doi:10.1111/1365-2656.12173)
McNamara KJ. 1995 Sexual dimorphism: the role of heterochrony. In Evolutionary change and heterochrony (ed. KJ McNamara), pp. 65-89. Chichester, UK: John Wiley & Sons.
Whiteman HH. 1997 Maintenance of polymorphism promoted by sex-specific fitness payoffs. Evolution 51, 2039-2044. (doi:10.2307/2411026)
Gabrion J. 1976 La néoténie chez Triturus helveticus Raz. Etude morphofonctionnelle de la fonction thyroidienne. PhD thesis, Université des Sciences et Techniques du Languedoc, Montpellier.
Kalezić ML, Džukić G, Popadić A. 1989 Paedomorphosis in Yugoslav Alpine newt (Triturus alpestris) populations: morphometric variability and sex ratio. Arh. Biol. Nauka (Beograd) 41, 67-79.
Denoël M. 2006 Seasonal variation of morph ratio in facultatively paedomorphic populations of the palmate newt Triturus helveticus. Acta Oecol. 29, 165-170. (doi:10.1016/j.actao.2005.09.003)
Denoël M. 2017 On the identification of paedomorphic and overwintering larval newts based on cloacal shape: review and guidelines. Curr. Zool. 62, 559-566. (doi:10.1093/cz/zow1054)
Miaud C. 1996 Répartition spatiale et croissance de larves de tritons du genre Triturus (amphibiens, urodèles) en situation de sympatrie. Bull. Soc. Herp. Fr. 79, 31-41.
Demars B. 2004 Régime alimentaire des tritons palmés (Triturus helveticus) et alpestres (Triturus alpestris) dans des ornières forestières (Fagne, Belgique): variation temporelle et spatiale du partage des ressources trophiques. Msc thesis, University of Liège, Liège, Belgium.
Allison PD. 2010 Survival analysis using SAS. A practical guide, 2nd edn. Cary, NC: SAS Institute Inc.
Hillman SS, Withers PC, Drewes RC, Hyllyard SD. 2013 Ecological and environmental physiology of amphibians. Oxford, UK: Oxford University Press.
Percino-Daniel R, Recuero E, Vázquez-Domínguez E, Zamudio KR, Parra-Olea G. 2016 All grown-up and nowhere to go: paedomorphosis and local adaptation in Ambystoma salamanders in the Cuenca Oriental of Mexico. Biol. J. Linn. Soc. 118, 582-597. (doi:10.1111/bij.12750)
Kalezić ML, Džukić G. 1985 Ecological aspects of the smooth newt (Triturus vulgaris) paedomorphosis from Montenegro. Ark. Biol. Nauka 37, 43-50.
Healy WR. 1970 Reduction of neoteny in Massachusetts populations of Notophthalmus viridescens. Copeia 1970, 578-581. (doi:10.2307/1442292)
Bonett RM, Chippindale PT. 2006 Streambed microstructure predicts evolution of development and life history mode in the plethodontid salamander Eurycea tynerensis. BMC Biol. 4, 1-12. (doi:10.1186/1741-7007-4-6)
Semlitsch RD, Harris RN, Wilbur HM. 1990 Paedomorphosis in Ambystoma talpoideum: maintenance of population variation and alternative life-history pathways. Evolution 44, 1604-1613. (doi:10.2307/2409340)
Ryan TJ, Swenson G. 2001 Does sex influence postreproductive metamorphosis in Ambystoma talpoideum? J Herpetol. 35, 697-700. (doi:10.2307/1565917)
Denoël M, Winandy L. 2015 The importance of phenotype diversity in conservation: resilience of palmate newt morphotypes after fish removal in Larzac ponds (France). Biol. Conserv. 192, 402-408. (doi:10.1016/j.biocon.2015.10.018)
Voss SR, Smith JJ. 2005 Evolution of salamander life cycles: a major-effect quantitative trait locus contributes to discrete and continuous variation for metamorphosis timing. Genetics 170, 275-281. (doi:10.1534/genetics.104.038273)
Voss SR, Shaffer HB. 2000 Evolutionary genetics of metamorphic failure using wild-caught vs. laboratory axolotls (Ambystoma mexicanum). Mol. Ecol. 9, 1401-1407. (doi:10.1046/j.1365-294x.2000.01025.x)
Denoël M, Lena JP, Joly P. 2007 Morph switching in a dimorphic population of Triturus alpestris (Amphibia, Caudata). Evol. Ecol. 21, 325-335. (doi:10.1007/s10682-006-9103-2)
Voss SR, Kump DK, Walker JA, Shaffer HB, Voss GJ. 2012 Thyroid hormone responsive QTL and the evolution of paedomorphic salamanders. Heredity 109, 293-298. (doi:10.1038/hdy.2012.41)
Denoël M, Ficetola GF. 2015 Using kernels and ecological niche modeling to delineate conservation areas in an endangered patch-breeding phenotype. Ecol. Appl. 25, 1922-1931. (doi:10.1890/14-1041.1)
Oromi N, Amat F, Sanuy D, Carranza S. 2014 Life history trait differences between a lake and a stream-dwelling population of the Pyrenean brook newt (Calotriton asper). Amphibia Reptilia 35, 53-62. (doi:10.1163/15685381-00002921)
Johnson CK, Voss SR. 2013 Salamander paedomorphosis. Linking thyroid hormone to life history and life cycle evolution. In Current topics in developmental biology, Animal metamorphosis, vol. 103. (ed. Y-B Shi), pp. 229-258. Burlington, MA: Academic Press.
Denver RJ, Glennemeier KS, Boorse GC. 2002 Endocrinology of complex life cycles: amphibians. In Hormones, brain and behaviour (eds D Pfaff, A Arnold, A Etgen, S Fahrbach, R Rubin), pp. 469-513. San Diego, CA: Academic Press.
Hayes T, Chan R, Licht P. 1993 Interactions of temperature and steroids on larval growth, development, and metamorphosis in a toad (Bufo boreas). J. Exp. Zool. 266, 206-215. (doi:10.1002/jez.1402660306)
Grayson KL, Bailey LL, Wilbur HM. 2011 Life history benefits of residency in a partially migrating pondbreeding amphibian. Ecology 92, 1236-1246. (doi:10.1890/11-0133.1)
Liebgold EB, Brodie Iii ED, Cabe PR. 2011 Female philopatry and male-biased dispersal in a directdeveloping salamander, Plethodon cinereus. Mol. Ecol. 20, 249-257. (doi:10.1111/j.1365-294X.2010.04946.x)
Helfer V, Broquet T, Fumagalli L. 2012 Sex-specific estimates of dispersal show female philopatry and male dispersal in a promiscuous amphibian, the alpine salamander (Salamandra atra). Mol. Ecol. 21, 4706-4720. (doi:10.1111/j.1365-294X.2012.05742.x)
Bull JJ, Shine R. 1979 Iteroparous animals that skip opportunities for reproduction. Am. Nat. 114, 296-303. (doi:10.1086/283476)
Mathiron AGE, Lena J-P, Baouch S, Denoël M. 2017 Data from: The ‘male escape hypothesis’: sex-biased metamorphosis in response to climatic drivers in a facultatively paedomorphic amphibian. Data Dryad Repository. (http://dx.doi.org/10.5061/dryad.60mk6)