Article (Scientific journals)
RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.
Liu, Shi; Zainuddin, Ima M.; Vanderschuren, Hervé et al.
2017In Plant Molecular Biology
Peer Reviewed verified by ORBi
 

Files


Full Text
liuetal2017.pdf
Author postprint (1.12 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Arabidopsis thaliana; Feruloyl CoA 6'-hydroxylase; Manihot esculenta; Post-harvest physiological deterioration; RNA interference; Scopoletin
Abstract :
[en] Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its roots that occurs within 24-72 h of harvest, rendering the roots unpalatable and unmarketable. PPD limits cassava's marketing possibilities in countries that are undergoing increased development and urbanisation due to growing distances between farms and consumers. The inevitable wounding of the roots caused by harvesting triggers an oxidative burst that spreads throughout the cassava root, together with the accumulation of secondary metabolites including phenolic compounds, of which the coumarin scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one) is the most abundant. Scopoletin oxidation yields a blue-black colour, which suggests its involvement in the discoloration observed during PPD. Feruloyl CoA 6'-hydroxylase is a controlling enzyme in the biosynthesis of scopoletin. The cassava genome contains a seven membered family of feruloyl CoA 6'-hydroxylase genes, four of which are expressed in the storage root and, of these, three were capable of functionally complementing Arabidopsis T-DNA insertion mutants in this gene. A RNA interference construct, designed to a highly conserved region of these genes, was used to transform cassava, where it significantly reduced feruloyl CoA 6'-hydroxylase gene expression, scopoletin accumulation and PPD symptom development. Collectively, our results provide evidence that scopoletin plays a major functional role in the development of PPD symptoms, rather than merely paralleling symptom development in the cassava storage root.
Research Center/Unit :
Agronomie, Bioingénierie et Chimie - AgroBioChem
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Liu, Shi
Zainuddin, Ima M.
Vanderschuren, Hervé  ;  Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Biologie végétale
Doughty, James
Beeching, John R.
Language :
English
Title :
RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.
Publication date :
18 March 2017
Journal title :
Plant Molecular Biology
ISSN :
0167-4412
eISSN :
1573-5028
Publisher :
Springer, Netherlands
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 01 April 2017

Statistics


Number of views
62 (1 by ULiège)
Number of downloads
1 (0 by ULiège)

Scopus citations®
 
29
Scopus citations®
without self-citations
27
OpenCitations
 
21
OpenAlex citations
 
34

Bibliography


Similar publications



Contact ORBi