[en] Least-squares health parameter identification techniques such as the Kalman filter have been massively used to solve the problem of turbine engine diagnosis. Indeed, such methods
give a good estimate provided that the discrepancies between the model prediction and the measurements are zero-mean, white random variables. In turbine engine diagnosis, however, this assumption does not always hold due to the presence of biases in the model. This is especially true for transient operation. As a result, the estimated parameters tend to diverge from their actual values which strongly deteriorates the diagnosis. The purpose of this contribution is to present a Kalman filter diagnosis tool where the model biases are treated as an additional random measurement error. The new methodology is tested on simulated transient data representative of a current turbofan layout. While relatively simple to implement, the newly developed diagnosis tool exhibits a much better accuracy than the original Kalman filter in the presence of model biases.
Disciplines :
Ingénierie mécanique Ingénierie aérospatiale
Auteur, co-auteur :
Borguet, Sébastien ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Turbomachines et propulsion aérospatiale
Dewallef, Pierre ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes de conversion d'énergie pour un dévelop.durable
Léonard, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Turbomachines et propulsion aérospatiale
Langue du document :
Anglais
Titre :
A Way to Deal with Model-Plant Mismatch for a Reliable Diagnosis in Transient Operation
Date de publication/diffusion :
mai 2006
Nom de la manifestation :
ASME Turbo Expo 2006 : Power for Land, Sea and Air
A. J. Volponi, Foundation of Gas Path Analysis (part i and ii), von Karman Institute LS03-01 : Gas Turbine Condition Monitoring and Fault Diagnosis, 2003.
R. E. Kalman, R. S. Bucy, New Results in Linear Filtering and Prediction Theory, Trans. ASME, Series D, Journal of Basic Engineering, vol. 83, 1961.
P. Dewallef, Application of the Kalman Filter to Health Monitoring of Gas Turbine Engines : A Sequential Approach to Robust Diagnosis, PhD. Thesis, University of Liège, 2005.
L. A. Urban, Gas Path Analysis Applied to Turbine Engine Condition Monitoring, AIAA/SAE Paper 72-1082, 1972.
J.-P. Duponchel, J. Loisy, R. Carillo, Steady and Transient Performance Calculation Method for Prediction, Analysis and Identification, AGARD LS-183, 1992.
T. Grönstedt, Least Squares Based Transient Nonlinear Gas Path Analysis, ASME Paper GT2005-68717,2005.
S. Ogaji, Y. Li, S. Sampath, R. Singh, Gas Path Fault Diagnosis of a Turbofan Engine from Transient Data Using Artificial Neural Networks, ASME Paper GT2003-38423,
D. Simon, D. L. Simon, Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering, ASME Paper GT2003-385 84, 2003.
P. Dewallef, O. Léonard, On-Line Performance Monitoring and Engine Diagnostic Using Robust Kalman Filtering Techniques, ASME Paper GT2003-38379, 2005.
S. Borguet, P. Dewallef, O. Léonard, On-Line Transient Engine Diagnostics in a Kalman Filtering Framework, ASME Paper GT2005-68013, 2005.
A. J. Volponi, Use of Hybrid Engine Modeling for On-Board Module Performance Tracking, ASME Paper GT2005-68169, 2005.
RTO, Performance Prediction and Simulation of Gas Turbine Engine Operation, Research and Technology Organisation Technical Report 44, 2002
A. E. Nielsen, C. W. Moll, S. Staudacher, Modeling and Validation of the Thermal Effects on Gas Turbine Transients, ASME J. of Eng. for Gas Turbine & Power, vol. 127, pp. 564-572, 2005.
E. Wan, R. van der Merwe, The Unscented Kalman Filter, in Kalman Filtering and Neural Networks, Wiley Series on Adaptive and Learning Systems for Signal Processing, Communications and Control, 2001.
B. A. Roth, D. L. Doel, J. J. Cissell, Probabilistic Matching of Turbofan Engine Performance Models to Test Data, ASME Paper GT2005-68201, 2005.
A. Stamatis, K. Mathioudakis, J. Ruiz, B. Curnock, Real-Time Engine Model Implementation for Adaptive Control and Performance Monitoring of Large Civil Turbofans, ASME Paper 2001-GT-0362, 2001.
P. P. Walsh, P. Fletcher, Gas Turbine Performance, Black-well Science, 1998.
J. Kurzke, Model Based Gas Turbine Parameter Corrections, ASME Paper GT2003-38234, 2003.