Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography
Park, S. H.; Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001, Australia
Talebi, M.; Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001, Australia
Amos, R. I. J.; Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001, Australia
Tyteca, Eva ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Analyse, qual. et risques - Labo. de Chimie analytique
Haddad, P. R.; Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001, Australia
Szucs, R.; Pfizer Global Research and Development, Sandwich, UK
Pohl, C. A.; Thermo Fisher Scientific, Sunnyvale, CA, USA
Dolan, J. W.; LC Resources Inc., 1795 NW Wallace Rd., McMinnville, OR, 97128, USA
Title :
Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography
Ng, B.K., Tan, T.T.Y., Shellie, R.A., Dicinoski, G.W., Haddad, P.R., Computer-assisted simulation and optimisation of retention in ion chromatography. TrAC 80 (2016), 625–635.
Tyteca, E., Park, S.H., Shellie, R.A., Haddad, P.R., Desmet, G., Computer-assisted multi-segment gradient optimization in ion chromatography. J. Chromatogr. A 1381 (2015), 101–109.
Drgan, V., Kotnik, D., Novic, M., Optimization of gradient profiles in ion-exchange chromatography using computer simulation programs. Anal. Chim. Acta 705 (2011), 315–321.
Drgan, V., Novic, M., Novic, M., Computational method for modeling of gradient separation in ion-exchange chromatography. J. Chromatogr. A 1216 (2009), 6502–6510.
Sosimenko, A.D., Haddad, P.R., Computer optimization in IC-ii a systematic evaluation of linear retention models for anions. J. Chromatogr. 546 (1991), 37–59.
Madden, J., Haddad, P.R., Retention models in ion chromatography and their use in computer optimization of eluent composition. TrAC 15 (1996), 531–537.
Rocklin, R.D., Pohl, C.A., Schibler, J.A., Gradient elution in ion chromatography. J. Chromatogr. A 411 (1987), 107–119.
Jandera, P., Churacek, J., Gradient elution in liquid chromatography I. The influence of the composition of the mobile phase on the capacity ratio (retention volume band width, and resolution) in isocratic elution-theoretical considerations. J. Chromatogr. 91 (1974), 207–221.
Park, S.H., Shellie, R.A., Dicinoski, G.W., Schuster, G., Talebi, M., Haddad, P.R., Szucs, R., Dolan, J.W., Pohl, C.A., Enhanced methodology for porting ion chromatography retention data. J. Chromatogr. A 1436 (2016), 59–63.
Shellie, R.A., Ng, B.K., Dicinoski, G.W., Poynter, S.D., O'Reilly, J.W., Pohl, C.A., Haddad, P.R., Prediction of analyte retention for ion chromatography separations performed using elution profiles comprising multiple isocratic and gradient steps. Anal. Chem. 80 (2008), 2474–2482.
Haddad, P.R., Jackson, P.E., Ion chromatography: principles and applications. Journal of Chromatography Library, 1990, Elsevier, Amsterdam, The Netherlands.
Tyteca, E., Talebi, M., Amos, R., Park, S.H., Taraji, M., Wen, Y., Szucs, R., Pohl, C.A., Dolan, J.W., Haddad, P.R., Towards a chromatographic similarity index to establish localized quantitative structure-retention models for retention prediction: use of retention factor ratio. J. Chromatogr. A 1486 (2017), 50–58.
Carlucci, G., D'Archivio, A.A., Maggi, M.A., Mazzeo, P., Ruggieri, F., Investigation of retention behaviour of non-steroidal anti-inflammatory drugs in high-performance liquid chromatography by using quantitative structure-retention relationships. Anal. Chim. Acta 601 (2007), 68–76.
Ukić Š., Novak, M., Žuvela, P., Avdalović N., Liu, Y., Buszewski, B., Bolanča, T., Development of gradient retention model in ion chromatography. Part I: conventional QSRR approach. Chromatographia 77 (2014), 985–996.
Ukić Š., Novak, M., Vlahović A., Avdalović N., Liu, Y., Buszewski, B., Bolanča, T., Development of gradient retention model in ion chromatography. Part II: artificial intelligence QSRR approach. Chromatographia 77 (2014), 997–1007.
Baczek, T., Kaliszan, R., Combination of linear solvent strength model and quantitative structure–retention relationships as a comprehensive procedure of approximate prediction of retention in gradient liquid chromatography. J. Chromatogr. 962 (2002), 41–55.
Daghir-Wojtkowiak, E., Studzińska, S., Buszewski, B., Kaliszan, R., Markuszewski, M.J., Quantitative structure–retention relationships of ionic liquid cations in characterization of stationary phases for HPLC. Anal. Methods 6 (2014), 1189–1196.
Kaliszan, R., Straten, M.A.V., Markuszewski, M., Cramers, C.A., Claessens, H.A., Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure–retention relationships. J. Chromatogr. 855 (1999), 455–486.
Plenis, A., Konieczna, L., Miekus, N., Baczek, T., Development of the HPLC method for simultaneous determination of lidocaine hydrochloride and tribenoside along with their impurities supported by the QSRR approach. Chromatographia 76 (2013), 255–265.
Kritikos, N., Tsantili-Kakoulidou, A., Loukas, Y.L., Dotsikas, Y., Liquid chromatography coupled to quadrupole-time of flight tandem mass spectrometry based quantitative structure-retention relationships of amino acid analogues derivatized via n-propyl chloroformate mediated reaction. J. Chromatogr. A 1403 (2015), 70–80.
Morgan, P.E., Barlow, D.J., Hanna-Brown, M., Flanagan, R.J., Artificial neural network modelling of the retention of acidic analytes in strong anion-exchange HPLC: elucidation of structure-retention relationships. Chromatographia 75 (2012), 693–700.
Gorynski, K., Bojko, B., Nowaczyk, A., Bucinski, A., Pawliszyn, J., Kaliszan, R., Quantitative structure-retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: endogenous metabolites and banned compounds. Anal. Chim. Acta 797 (2013), 13–19.
Goodarzi, M., Jensen, R., Vander Heyden, Y., QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions. J. Chromatogr. B 910 (2012), 84–94.
Put, R., Perrin, C., Questier, F., Coomans, D., Massart, D.L., Vander Heyden, Y., Classification and regression tree analysis for molecular descriptor selection and retention prediction in chromatographic quantitative structure–retention relationship studies. J. Chromatogr. A 988 (2003), 261–276.
Talebi, M., Schuster, G., Shellie, R.A., Szucs, R., Haddad, P.R., Performance comparison of partial least squares-related variable selection methods for quantitative structure retention relationships modelling of retention times in reversed-phase liquid chromatography. J. Chromatogr. A 1424 (2015), 69–76.
Hancock, T., Put, R., Coomans, D., Vander Heyden, Y., Everingham, Y., A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies. Chemom. Intell. Lab. Syst. 76 (2005), 185–196.
Zuvela, P., Liu, J.J., Macur, K., Baczek, T., Molecular descriptor subset selection in theoretical peptide quantitative structure-retention relationship model development using nature-inspired optimization algorithms. Anal. Chem. 87 (2015), 9876–9883.
Gupta, V.K., Khani, H., Ahmadi-Roudi, B., Mirakhorli, S., Fereyduni, E., Agarwal, S., Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks. Talanta 83 (2011), 1014–1022.
Ghasemi, J., Saaidpour, S., QSRR Prediction of the chromatographic retention behavior of painkiller drugs. J. Chromatogr. Sci. 47 (2009), 156–163.
Song, M., Breneman, C.M., Bi, J., Sukumar, N., Bennett, K.P., Cramer, S., Tugcu, N., Prediction of protein retention times in anion-exchange chromatography systems using support vector regression. J. Chem. Inf. Comput. Sci. 42 (2002), 1347–1357.
He, L., Jurs, P.C., Assessing the reliability of a QSAR model's predictions. J. Mol. Graph. Model 23 (2005), 503–523.
Sheridan, R.P., Feuston, B.P., Maiorov, V.N., Kearsley, S.K., Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J. Chem. Inf. Comput. Sci. 44 (2004), 1912–1928.
Johnson, M.A., Maggiora, G.M., Concepts and Applications of Molecular Similarity. 1990, John Wiley & Sons, New York.
Talebi, M., Park, S.H., Taraji, M., Wen, Y., Amos, R.I.J., Haddad, P.R., Shellie, R.A., Szucs, R., Pohl, C.A., Dolan, J.W., Retention time prediction based on molecular structure in pharmaceutical method development: a perspective. LCGC 34 (2016), 550–558.
Tropsha, A., Gramatica, P., Gombar, V.K., The importance of being earnest: validation in the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 22 (2003), 69–77.
Zakaria, P., Dicinoski, G.W., Ng, B.K., Shellie, R.A., Hanna-Brown, M., Haddad, P.R., Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography. J. Chromatogr. A 1216 (2009), 6600–6610.
MarvinSketch, ChemAxon 2016, chemaxon.com.
Halgren, T.A., Merck molecular force field. I. Basis form, scope, parameterization, and performance of MMFF94. J. Comp. Chem. 17 (1996), 490–519.
Halgren, T.A., Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comp. Chem. 17 (1996), 520–552.
Halgren, T.A., Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comp. Chem. 17 (1996), 553–586.
Halgren, T.A., Nachbar, R.B., Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J. Comp. Chem. 17 (1996), 587–615.
Vainio, M.J., Johnson, M.S., Generating conformer ensembles using a multiobjective genetic algorithm. J. Chem. Inf. Model. 47 (2007), 2462–2474.
Puranen, J.S., Vainio, M.J., Johnson, M.S., Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery. J. Comp. Chem. 31 (2010), 1722–1732.
Stewart, J.J., Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 19 (2013), 1–32.
MOPAC 2012, Stewart Computational Chemistry, Colorado Springs: CO, USA, OpenMOPAC.net.
Leardi, R., Gonzalez, A.L., Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemom. Intell. Lab. Syst 41 (1998), 195–207.
Willett, P., Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today 11 (2006), 1046–1053.
Consonni, V., Ballabio, D., Todeschini, R., Evaluation of model predictive ability by external validation techniques. J. Chemometr. 24 (2010), 194–201.
Roy, K., Das, R.N., Ambure, P., Aher, R.B., Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom. Intell. Lab. Syst. 152 (2016), 18–33.
Chirico, N., Gramatica, P., Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J. Chem. Inf. Model. 52 (2012), 2044–2058.
Héberger, K., Sum of ranking differences compares methods or models fairly. TrAC 29 (2010), 101–109.
Kollár-Hunek, K., Héberger, K., Method and model comparison by sum of ranking differences in cases of repeated observations (ties). Chemom. Intell. Lab. Syst. 127 (2013), 139–146.
Racz, A., Bajusz, D., Heberger, K., Consistency of QSAR models: correct split of training and test sets, ranking of models and performance parameters. SAR QSAR Environ. Res. 26 (2015), 683–700.