Vaňková, N.; University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentska 573, Pardubice, Czech Republic, Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, Brussels, Belgium
De Vos, J.; Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, Brussels, Belgium
Tyteca, Eva ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Analyse, qual. et risques - Labo. de Chimie analytique
Desmet, G.; Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, Brussels, Belgium
Edge, T.; Thermo Fisher Scientific, Tudor Road, Manor Park, Runcorn, United Kingdom
Česlová, L.; University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentska 573, Pardubice, Czech Republic
Česla, P.; University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentska 573, Pardubice, Czech Republic
Eeltink, S.; Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, Brussels, Belgium
Title :
Effect of gradient steepness on the kinetic performance limits and peak compression for reversed-phase gradient separations of small molecules
Khalikova M.A., Šatínský D., Šmidrkalová T., Solich P. On-line SPE-UHPLC method using fused core columns for extraction and separation of nine illegal dyes in chilli-containing spices. Talanta 2014, 130:433-441.
Scarlata C.J., Hyman D.A. Development and validation of a fast high pressure liquid chromatography method for the analysis of lignocellulosic biomass hydrolysis and fermentation products. J. Chromatogr. A 2010, 1217:2082-2087.
Van Deemter J.J., Zuiderweg F.J., Klinkenberg A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 1956, 5:271-289.
Knox J.H., Saleem M. Kinetic conditions for optimum speed and resolution in column chromatography. J. Chromatogr. Sci. 1969, 7:614-622.
Giddings J.C. Dynamics of chromatography: principles and theory. 1965, Marcel Dekker, New York. 1st ed.
Bristow P.A., Knox J.H. Standardization of test conditions for high-performance liquid-chromatography columns. Chromatographia 1977, 10:279-289.
Eeltink S., Gzil P., Kok T.W., Schoenmakers P.J., Desmet G. Selection of comparison criteria and experimental conditions to evaluate the kinetic performance of monolithic and packed-bed columns. J. Chromatogr. A 2006, 1130:108-114.
Eeltink S., Desmet G., Truyols G.V., Rozing G.P., Schoenmakers P.J., Kok W.T. Performance limits of monolithic and packed capillary columns in high-performance liquid chromatography and capillary electrochromatography. J. Chromatogr. A 2006, 1104:256-262.
Giddings J.C. Comparison of theoretical limit of separating speed in gas and liquid chromatography. Anal. Chem. 1965, 37:60-63.
Poppe H. Some reflections on speed and efficiency of modern chromatographic methods. J. Chromatogr. A 1997, 778:3-21.
Desmet G., Clicq D., Gzil P. Geometry-independent plate height representation methods for the direct comparison of the kinetic performance of LC supports with a different size or morphology. Anal. Chem. 2005, 77:4058-4070.
Eeltink S., Decrop W.M.C., Steiner F., Ursem M., Cabooter D., Desmet G., Kok W.T. Use of kinetic plots for the optimization of the separation time in ultra-high-pressure LC. J. Sep. Sci. 2010, 33:2629-2635.
Swartz M.E. UPLC: an introduction and review. J. Liq. Chromatogr. Relat. Technol. 2005, 28:1253-1263.
Steiner F. Does increased LC peak capacity equal increased value for complex sample analysis. Lab&More 2014, 4.(14):30-32.
Kirkland J.J. Development of some stationary phases for reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2004, 1060:9-21.
Hara T., Makino S., Watanabe Y., Ikegami T., Cabrera K., Smarsly B., Tanaka N. The performance of hybrid monolithic silica capillary columns prepared by changing feed ratios of tetramethoxysilane and methyltrimethoxysilane. J. Chromatogr. A 2010, 1217:89-98.
Vaast A., Terryn H., Svec F., Eeltink S. Nanostructured porous polymer monolithic columns for capillary liquid chromatography of peptides. J. Chromatogr. A 2014, 1374:171-179.
Guiochon G., Gritti F. Shell particles, trials, tribulations and triumphs. J. Chromatogr. A 2011, 1218:1915-1938.
Broeckhoven K., Cabooter D., Eeltink S., Desmet G. Kinetic plot based comparison of the efficiency and peak capacity of high-performance liquid chromatography columns: theoretical background and selected examples. J. Chromatogr. A 2012, 1228:20-30.
Neue U.D., Marchand D.H., Snyder L.R. Peak compression in reversed-phase gradient elution. J. Chromatogr. A 2006, 1111:32-39.
Snyder L.R., Dolan J.W., Gant J.R. Gradient elution in high-performance liquid chromatography. J. Chromatogr. 1979, 165:3-30.
Poppe H., Paanakker J., Bronckhorst M. Peak width in solvent-programmed chromatography: I. General description of peak broadening in solven-programmed elution. J. Chromatogr. 1981, 204:77-84.
Neue U.D. Theory of peak capacity in gradient elution. J. Chromatogr. A 2005, 1079:153-161.
Dolan J.W., Snyder L.R., Djordjevic N.M., Hill D.W., Waeghe T.J. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time I. Peak capacity limitations. J. Chromatogr. A. 1999, 857:1-20.
Broeckhoven K., Cabooter D., Lynen F., Sandra P., Desmet G. The kinetic plot method applied to gradient chromatography: theoretical framework and experimental validation. J. Chromatogr. A 2010, 1217:2787-2795.
Desmet G., Cabooter D., Broeckhoven K. Graphical data representation methods to asses the quality of LC columns. Anal. Chem. 2015, 10.1021/ac504473p.
Wouters B., Broeckhoven K., Wouters S., Bruggink C., agroskin Y., Pohl C.A., Eeltink S. Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations. J. Chromatogr. A 2014, 1370:63-69.
Vaast A., Vos J.De., Broeckhoven K., Verstraeten M., Eeltink S., Desmet G. Maximizing the peak capacity using coupled columns packed with 2.6μm core-shell particles at 1200bar. J. Chromatogr. A 2012, 1256:72-79.
Vaast A., Tyteca E., Desmet G., Schoenmakers P.J., Eeltink S. Gradient-elution parameters in capillary liquid chromatography for high-speed separations of peptides and intact proteins. J. Chromatogr. A 2014, 1355:149-157.
Eeltink S., Rozing G.P., Schoenmakers P.J., Kok W.T. Study of the influence of the aspect ratio on efficiency, flow resistance and retention factors of packed capillary columns in pressure- and electrically-driven liquid chromatography. J. Chromatogr. A 2004, 1044:311-316.
Ko J., Ford J.C. Comparison of selected retention models in reversed-phase liquid chromatography. J. Chromatogr. A 2001, 913:3-13.