[en] Kalman filters are largely used in the jet engine community for condition monitoring purpose. This algorithm gives a good estimate of the engine condition provided that the residuals between the model prediction and the measurements are zero-mean, Gaussian random variables. In the case of sensor faults, this assumption does not hold anymore and consequently the diagnosis is spoiled.
This contribution presents a recursive estimation algorithm based on a Quadratic Programming formulation which provides robustness against sensor faults and allows constraints on the health parameters to be specified. The improvements in estimation accuracy brought by this new algorithm are illustrated by a series of typical test-cases that may be encountered on current turbofan engines.
Disciplines :
Mathématiques Ingénierie aérospatiale
Auteur, co-auteur :
Borguet, Sébastien ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Turbomachines et propulsion aérospatiale
Léonard, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Turbomachines et propulsion aérospatiale
Langue du document :
Anglais
Titre :
A Quadratic Programming Framework for Constrained and Robust Jet Engine Health Monitiring
Date de publication/diffusion :
2007
Nom de la manifestation :
2nd European Conference on Aerospace Sciences
Lieu de la manifestation :
Brussels, Belgique
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 2nd European Conference on Aerospace Sciences