Jupille T., Snyder L., MolnarF I. Optimizing multi-linear gradients in HPLC. LC-GC Europe 2002, 596-601.
Concha-Herrara V., Vivó-Truyols G., Torres-Lapasio J.R., García-Alvarez-Coque M.C. Limits of multi-linear gradient optimization in reversed-phase liquid chromatography. J. Chromatogr. A 2005, 1063:79-88.
Nikitas P., Pappa-Louisi A., Papachristos K. Optimisation technique for stepwise gradient elution in reversed-phase liquid chromatography. J. Chromatogr. A 2004, 1033:283-289.
De Beer M., Lynen F., Hanna-Brown M., Sandra P. Multiple step gradient analysis in stationary phase optimised selectivity LC for the analysis of complex mixtures. Chromatographia 2009, 69:609-614.
Jandera P., Churacek J. Gradient elution in column liquid chromatography: theory and practice. J. Chromatogr. 1979, 170:1-10.
Shan Y., Weibing Z., Seidel-Morgenstern A., Zhao R., Zhang Y. Multi-segment linear gradient optimization strategy based on resolution map in HPLC. Sci. China Ser. B: Chem. 2006, 46:315-325.
Berridge J.C. Simplex optimization of high-performance liquid chromatographic separations. J. Chromatogr. 1989, 485:3-14.
Lämmerhofer M., Di Eugenio P.D., Molnar I., Lindner W. Computerized optimization of the high-performance liquid chromatographic enantioseparation of a mixture of 4-dinitrophenyl amino acids on a quinine carbamate-type chiral stationary phase using Drylab. J. Chromatogr. B 1997, 689:123-135.
Hewitt E.F., Lukulay P., Galushko S. Implementation of a rapid and automated high performance liquid chromatography method development strategy for pharmaceutical drug candidates. J. Chromatogr. A 2006, 1107:79-87.
Debrus B., Lebrun P., Rozet E., Schofield T., Mbinze J.K., Marini R.D., Rudaz S., Boulanger B., Hubert Ph. A new method for quality by design robust method optimization in liquid chromatography. LC-GC Europe 2013, 26:370-375.
Tyteca E., Liekens A., Clicq D., Fanigliulo A., Debrus B., Rudaz S., Guillarme D., Desmet G. Predictive elution window shifting and stretching as a generic search strategy for automated method development for liquid chromatography. Anal. Chem. 2012, 84:7823-7830.
Tyteca E., Periat A., Rudaz S., Desmet G., Guillarme D. Retention modeling and method development in hydrophilic interaction chromatography. J. Chromatogr. A 2014, 1337:116-127.
McCalley D. Study of the selectivity, retention mechanisms and performance of alternative silica-based stationary phases for separation of ionised solutes in hydrophilic interaction chromatography. J. Chromatogr. A 2010, 1217:3408-3417.
Greco G., Grosse S., Letzel T. Study of the retention behavior in zwitterionic hydrophilic interaction chromatography of isomeric hydroxy- and aminobenzoic acids. J. Chromatogr. A 2012, 1235:60-67.
Jin G., Guo Z., Zhang F., Xue X., Jin Y., Liang X. Study on the retention equation in hydrophilic interaction liquid chromatography. Talanta 2008, 76:522-527.
Karatapanis A., Fiamegos Y.C., Stalikas C.D. A revisit to the retention mechanism of hydrophilic interaction liquid chromatography using model organic compounds. J. Chromatogr. A 2008, 1218:2871-2879.
Jandera P., Hájek T. Utilization of dual retention mechanism on columns with bonded PEG and diol stationary phases for adjusting the separation selectivity of phenolic and flavone natural antioxidants. J. Sep. Sci. 2009, 32:3603-3619.
Dolan J.W., Lommen D.C., Snyder L.R. High-performance liquid chromatographic computer simulation based on a restricted multi-parameter approach: I. Theory and verification. J. Chromatogr. 1990, 535:55-74.
Jandera P. Can the theory of gradient liquid chromatography be useful in solving practical problems?. J. Chromatogr. A 2006, 1126:195-218.
Nikitas P., Pappa-Louisi A. New approaches to linear gradient elution used for optimization in reversed-phase liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2009, 32:1527-1576.
Neue U.D., Kuss H.-J. Improved reversed-phase gradient retention modeling. J. Chromatogr. A 2010, 1217:3794-3803.
Snyder L.R., Saunders D.L. Optimized solvent programming for separations of complex samples by liquid-solid adsorption chromatography in columns. J. Chromatogr. Sci. 1969, 7:195-208.
Marrubini G., Castillo Mendoza B.E., Massolini G. Separation of purine and pyrimidine bases and nucleosides by hydrophilic interaction chromatography. J. Sep. Sci. 2010, 33:803-816.
Nikitas P., Pappa-Louisi A., Agrafiotou P., Mansour A. Multilinear gradient elution optimization in reversed-phase liquid chromatography based on logarithmic retention models: application to separation of a set of pyrines, pyrimidines and nucleosides. J. Chromatogr. A 2011, 1218:5658-5663.
Debrus B., Lebruna P., Ceccat A., Caliaroc G., Rozet E., Nistor I., Opreand R., Rupérez F.J., Barbas C., Boulanger B., Hubert P. Application of new methodologies based on design of experiments, independent component analysis and design space for robust optimization in liquid chromatography. Anal. Chim. Acta 2011, 691:33-42.
Schmidt A.H., Molnar I. Using an innovative quality-by-design approach for development of a stability indicating UHPLC method for ebastine in the API and pharmaceutical formulations. J. Chromatogr. A 2013, 78-79:65-74.