[en] Despite advances in experimental and theoretical neuroscience, we are still trying to identify key biophysical details that are important for characterizing the operation of brain circuits. Biological mechanisms at the level of single neurons and synapses can be combined as ‘building blocks’ to generate circuit function. We focus on the importance of capturing multiple timescales when describing these intrinsic and synaptic components. Whether inherent in the ionic currents, the neuron’s complex morphology, or the neurotransmitter composition of synapses, these multiple timescales prove crucial for capturing the variability and richness of circuit output and enhancing the information-carrying capacity observed across nervous systems.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Getting P.A. Emerging principles governing the operation of neural networks. Annu Rev Neurosci 1989, 12:185-204.
Brunel N., Hakim V., Richardson M.J.E. Single neuron dynamics and computation. Curr Opin Neurobiol 2014, 25:149-155.
Traub R.D., Wong R.K., Miles R., Michelson H. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 1991, 66:635-650.
Buchholtz F., Golowasch J., Epstein I.R., Marder E. Mathematical model of an identified stomatogastric ganglion neuron. J Neurophysiol 1992, 67:332-340.
Brette R. What is the most realistic single-compartment model of spike initiation?. PLoS Comput Biol 2015, 11:e1004114.
Jolivet R., Rauch A., Luscher H., Gerstner W. Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 2006, 21:35-49.
Huys Q.J.M., Paninski L. Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Comput Biol 2009, 5:e1000379.
Lepora N.F., Overton P.G., Gurney L. Efficient fitting of conductance-based model neurons from somatic current clamp. J Comput Neurosci 2011, 32:1-24.
Meliza C.D., Kostuk M., Huang H., Nogaret A., Margoliash D., Abarbanel H.D.I. Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 2014, 108:1495-1516.
Brookings T., Goeritz M.L., Marder E. Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment. J Neurophysiol 2014, 112:2332-2348.
Schulz D.J., Goaillard J.M., Marder E. Variable channel expression in identified single and electrically coupled neurons in different animals. Nat Neurosci 2006, 9:356-362.
Goaillard J.-M., Schulz D.J., Taylor1 A.L., Marder E. Functional consequences of animal-to-animal variation in circuit parameters. Nat Neurosci 2009, 12:1424-1430.
Roffman R.C., Norris B.J., Calabrese R.L. Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. J Neurophysiol 2012, 107:1681-1693.
Amendola J., Woodhouse A., Martin-Eauclaire M.-F., Goaillard J.-M. Ca2+/cAMP-sensitive covariation of IA and IH voltage dependences tunes rebound firing in dopaminergic neurons. J Neurosci 2012, 32:2166-2181.
Golowasch J. Ionic current variability and functional stability in the nervous system. BioScience 2014, 64:570-580.
Couton L., Mauss A.S., Evers J.F., Landgraf M. Development of connectivity in a motoneuronal network in Drosophila larvae. Curr Biol 2015, 25:568-576.
Marder E., O'Leary T., Shruti S. Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci 2014, 37:329-346.
Grashow R., Brookings T., Marder E. Reliable neuromodulation from circuits with variable underlying structure. Proc Natl Acad Sci USA 2009, 106:11742-11746.
Golowasch J., Goldman M.S., Abbott L.F., Marder E. Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 2002, 87:1129-1131.
Marder E., Taylor A.L. Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 2011, 14:133-138.
Goldman M.S., Golowasch J., Marder E., Abbott L.F. Global structure, robustness, and modulation of neuronal models. J Neurosci 2001, 21:5229-5238.
Prinz A.A., Bucher D., Marder E. Similar network activity from disparate circuit parameters. Nat Neurosci 2004, 7:1345-1352.
Rathour R.K., Narayanan R. Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons. J Physiol 2012, 590.22:5629-5652.
Lamb D.G., Calabrese R.L. Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PLoS ONE 2013, 8:e79267.
Zhao S., Golowasch J. Ionic current correlations underlie the global tuning of large numbers of neuronal activity attributes. J Neurosci 2012, 32:13380-13388.
O'Leary T., Williams A.H., Franci A., Marder E. Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 2014, 82:809-821.
Achard P., De Schutter E. Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2006, 2:e94.
Hendrickson E.G., Edgerton J.R., Jaeger D. The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. J Comput Neurosci 2011, 30:301-321.
Günay C., Sieling F.H., Dharmar L., Lin W.-H., Wolfram V., Marley R., Baines R.A., Prinz A.A. Distal spike initiation zone location estimation by morphological simulation of ionic current filtering demonstrated in a novel model of an identified Drosophila motoneuron. PLoS Comput Biol 2015, 11:e1004189.
Almog M., Korngreen A. A quantitative description of dendritic conductances and its application to dendritic excitation in layer 5 pyramidal neurons. J Neurosci 2014, 34:182-196.
Rathour R.K., Narayanan R. Homeostasis of functional maps in active dendrites emerges in the absence of individual channelostasis. Proc Natl Acad Sci U S A 2014, 111:E1787-E1796.
Yonehara K., Farrow K., Ghanem A., Hillier D., Balint K., Teixeira M., Jüttner J., Noda M., Neve R.L., Conzelmann K.K., Roska B. The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron 2013, 79:1078-1085.
Drion G., Franci A., Dethier J., Sepulchre R. Dynamic input conductances shape neuronal spiking. eNeuro 2015, 2:E0031.
Drion G., O'Leary T., Marder E. Ion channel degeneracy enables robust and tunable neuronal firing rates. Proc Natl Acad Sci U S A 2015, 112:E5361-E5370.
Clopath C., Büsing L., Vasilaki E., Gerstner W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 2010, 13:344-352.
Lim S., McKee J.L., Woloszyn L., Amit Y., Freedman D.J., Sheinberg D.L., Brunel N. Inferring learning rules from distributions of firing rates in cortical neurons. Nat Neurosci 2015, 18:1804-1810.
Froemke R.C. Plasticity of cortical excitatory-inhibitory balance. Annu Rev Neurosci 2015, 38:195-219.
Kehoe J. The physiological role of three acetylcholine receptors in synaptic transmission in Aplysia. J Physiol 1972, 225:147-172.
Jan Y.N., Jan L.Y., Kuffler S.W. A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc Natl Acad Sci U S A 1979, 76:1501-1505.
Hnasko T.S., Edwards R.H. Neurotransmitter co-release: mechanism and physiological role. Annu Rev Physiol 2012, 74:225.
Kennedy C. ATP as a cotransmitter in the autonomic nervous system. Auton Neurosci 2015, 191:2-15.
Hirasawa H., Betensky R.A., Raviola E. Corelease of dopamine and GABA by a retinal dopaminergic neuron. J Neurosci 2012, 32:13281-13291.
Tritsch N.X., Ding J.B., Sabatini B.L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 2012, 490:262-266.
Tritsch N.X., Oh W.-J., Gu C., Sabatini B.L. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. eLife 2014, 3:e01936.
Saunders A., Granger A.J., Sabatini B.L. Corelease of acetylcholine and GABA from cholinergic forebrain neurons. eLife 2015, 4:e06412.
Muschamp J.W., Hollander J.A., Thompson J.L., Voren G., Hassinger L.C., Onvani S., Kamenecka T.M., Borgland S.L., Kenny P.J., Carlezon W.A. Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc Natl Acad U S A 2014, 111:E1648-E1655.
Vaaga C.E., Borisovska M., Westbrook G.L. Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr Opin Neurobiol 2014, 29:25-32.
Yu X., Ye Z., Houston C.M., Zecharia A.Y., Ma Y., Zhang Z., Uygun D.S., Parker S., Vyssotski A.L., Yustos R., Franks N.P., Brickley S.G., Wisden W. Wakefulness is governed by GABA and histamine cotransmission. Neuron 2015, 87:164-178.
Liu S., Plachez C., Shao Z., Puche A., Shipley M.T. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells. J Neurosci 2013, 33:2916-2926.
Chuhma N., Mingote S., Moore H., Rayport S. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron 2014, 81:901-912.
Adrover M.F., Shin J.H., Alvarez V.A. Glutamate and dopamine transmission from midbrain dopamine neurons share similar release properties but are differentially affected by cocaine. J Neurosci 2014, 34:3183-3192.
Milner L.D., Landmesser L.T. Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J Neurosci 1999, 19:3007-3022.
Dulcis D., Jamshidi P., Leutgeb S., Spitzer N.C. Neurotransmitter switching in the adult brain regulates behavior. Science 2013, 340:449-453.
Spitzer N.C. Neurotransmitter switching? No surprise. Neuron 2015, 86:1131-1144.
Wieland S., Du D., Oswald M.J., Parlato R., Köhr G., Kelsch W. Phasic dopaminergic activity exerts fast control of cholinergic interneuron firing via sequential NMDA, D2, and D1 receptor activation. J Neurosci 2014, 34:11549-11559.
Khalilov I., Minlebaev M., Mukhtarov M., Khazipov R. Dynamic changes from depolarizing to hyperpolarizing GABAergic actions during giant depolarizing potentials in the neonatal rat hippocampus. J Neurosci 2015, 35:12635-12642.
Brown T.G. The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond Ser B 1911, 308-319.
Perkel D.H., Mulloney B. Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science 1974, 185:181-183.
Wang X.J., Rinzel J. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comp 1992, 4:84-97.
Sharp A.A., Skinner F.K., Marder E. Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits. J Neurophysiol 1996, 76:867-883.
Grashow R., Brookings T., Marder E. Compensation for variable intrinsic neuronal excitability by circuit-synaptic interactions. J Neurosci 2010, 30:9145-9156.
Dethier J., Drion G., Franci A., Sepulchre R. A positive feedback at the cellular level promotes robustness and modulation at the circuit level. J Neurophysiol 2015, 114:2472-2484.
Barreiro A., Thilo E.L., Shea-Brown E. A-current and type I/type II transition determine collective spiking from common input. J Neurophysiol 2012, 108:1631-1645.
Hong S., Ratté S., Prescott S.A., de Schutter E. Single neuron firing properties impact correlation-based population coding. J Neurosci 2012, 32:1413-1428.
Ratté S., Hong S., De Schutter E., Prescott S.A. Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer. Neuron 2013, 78:758-772.
Gjorgjieva J., Mease R.A., Moody W.J., Fairhall A.L. Intrinsic neuronal properties switch the mode of information transmission in networks. PLoS Comput Biol 2014, 10:e1003962.
Mease R.A., Famulare M., Gjorgjieva J., Moody W.J., Fairhall A.L. Emergence of efficient encoding by single neurons in the developing cortex. J Neurosci 2013, 33:12154-12170.
Padmanabhan K., Urban N.N. Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nat Neurosci 2010, 13:1276-1282.
Tripathy S.J., Padmanabhan K., Gerkin R.C., Urban N.N. Intermediate intrinsic diversity enhances neural population coding. Proc Natl Acad Sci U S A 2013, 110:8248-8253.
Padmanabhan K., Urban N.N. Disrupting information coding via block of 4-AP-sensitive potassium channels. J Neurophysiol 2014, 112:1054-1066.
Gjorgjieva J., Sompolinsky H., Meister M. Benefits of pathway splitting in sensory coding. J Neurosci 2014, 34:12127-12144.
Kastner D.B., Baccus S.A., Sharpee T.O. Critical and maximally informative encoding between neural populations in the retina. Proc Natl Acad Sci U S A 2015, 112:2533-2538.
Markram H., Muller E., Ramaswamy S., Reimann M.W., Abdellah M., Sanchez C.A., Ailamaki A., Alonso-Nanclares L., Antille N., Arsever S., et al. Reconstruction and simulation of neocortical microcircuitry. Cell 2015, 163:456-492.
Morgan R.J., Santhakumar amd V., Soltesz I. Modeling the dentate gyrus. Prog Brain Res 2007, 163:639-658.
Lee S.H., Marchionni I., Bezaire M., Varga C., Danielson N., Lovett-Barron M., Losonczy A., Soltesz I. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 2014, 82:1129-1244.
Wu J.-Y., Tsau Y., Hopp H.-P., Cohen L.B., Tang A.C., Falk C.X. Consistency in nervous systems: trial-to-trial and animal-to-animal variations in the responses to repeated applications of a sensory stimulus in Apysia. J Neurosci 1994, 14:1366-1384.
Wu J.-Y., Cohen L.B., Falk C.X. Neuronal activity during different behavior in Aplysia: a distributed organization. Science 1994, 263:820-823.
Zochowski M., Cohen L.B., Fuhrmann G., Kleinfeld D. Distributed and partially separate pools of neurons are correlated with two different components of the gill-withdrawal reflex in Aplysia. J Neurosci 2000, 20:8485-8492.
Biron D., Wasserman S., Thomas J.H., Samuel A.D., Sengupta P. An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior. Proc Natl Acad Sci U S A 2008, 105:11002-11007.
Larsch J., Ventimiglia D., Bargmann C.I., Albrecht D.R. Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Proc Natl Acad Sci U S A 2013, 110:E4266-E4273.
Gutierrez G.J., O'Leary T., Marder E. Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 2013, 77:845-858.
Gutierrez G.J., Marder E. Modulation of a single neuron has state-dependent actions on circuit dynamics. eNeuro 2014, 1:E0009.
Fenton A.A., Muller R.U. Place cell discharge is extremely variable during individual passes of the rat through the firing field. Proc Natl Acad Sci U S A 1998, 95:3182-3187.
Dombeck D.A., Harvey C.D.D., Tian L., Looger L.L., Tank D.W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 2010, 13:1433-1440.
Baldassarre A., Lewis C.M., Committeri G., Snyder A.Z., Romani G.L., Corbetta M. Individual variability in functional connectivity predicts performance of a perceptual task. Proc Natl Acad Sci U S A 2012, 109:3516-3521.
Mueller S., Wang D., Fox M.D., Yeo B.T.T., Sepulcre J., Sabuncu M.R., Shafee R., Lu J., Liu H. Individual variability in functional connectivity architecture of the human brain. Neuron 2013, 77:586-595.
McGinley M.J., Vinck M., Reimer J., Batista-Brito R., Zagha E., Cadwell C.R., Tolias A.S., Cardin J.A., McCormick D.A. Waking state: rapid variations modulate neural and behavioral responses. Neuron 2015, 87:1143-1161.
Tripodi M., Evers J.-F., Mauss A., Bate M., Landgraf M. Structural homeostasis: compensatory adjustments of dendritic arbor geometry in response to variations of synaptic input. PLoS Biol 2008, 6:e260.
Srikanth S., Narayanan R. Variability in state-dependent plasticity of intrinsic properties during cell-autonomous self-regulation of calcium homeostasis in hippocampal model neurons. eNeuro 2015, 2. e0053-15.2015.
Gjorgjieva J., Clopath C., Audet J., Pfister J.-P. A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations. Proc Natl Acad Sci U S A 2011, 108:19383-19388.
Anirudhan A., Narayanan R. Analogous synaptic plasticity profiles emerge from disparate channel combinations. J Neurosci 2015, 35:4691-4705.
Connor J., Stevens C. Prediction of repetitive firing behavior from voltage clamp data on an isolated neuron soma. J Physiol 1971, 213:31-54.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.