[en] Two hypotheses were tested with respect to the germination of Diplolophium marthozianum, an endemic plant species of the copper-cobalt outcrops in Katanga, Democratic Republic of Congo: (1) germination of copper-endemics is limited by fungal infection in the absence of pathogen control and (2) the germination success of this copper-endemic species is copper-dependent. Seed lots of twenty seeds were weighed, soaked in different disinfection treatments and then placed in a germination medium containing four distinct copper concentrations for 30 days. Seed viability was measured at the beginning and at the end of the experiment by a cut test. Final germination percentage (15.2 ± 8.2 %) and seed viability (24.2 ± 10.3 %) were not affected by copper concentration or disinfection treatments. D. marthozianum is able to germinate in a substrate without added copper, despite pervasive fungal infection. However, seed mass had a significant positive effect on seed germination suggesting that selecting the largest seeds may ensure the highest germination success in ex situ conservation programs.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Boisson, Sylvain ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Ortmans, William ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Maréchal, Justine
Majerus, Marie
Mahy, Grégory ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Monty, Arnaud ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Language :
English
Title :
No copper required for germination of an endangered endemic species from the Katangan Copperbelt (Katanga, DR Congo): Diplolophium marthozianum
Alternative titles :
[fr] La germination de l'espèce endémique menacée de l'arc cupro-cobaltifère (Katanga, RDC), Diplolophium marthozianum, ne nécessite aucune teneur en cuivre
Publication date :
January 2017
Journal title :
Tropical Ecology
ISSN :
0564-3295
Publisher :
Scientific Publishers
Volume :
58
Issue :
1
Pages :
193-198
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture F.R.S.-FNRS - Fonds de la Recherche Scientifique
Antonovics, J., A. D. Bradshaw, & R. G. Turner. 1971. Heavy metal tolerance in plants. Advances in Ecological Research 7: 1–85.
Baker, A. J. M., W. H. O. Ernst, A. Van der Ent, F. Malaisse & R. Ginocchio. 2010. Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. pp. 7–40. In: L. Batty & K. Hallberg (eds.). Ecology of Industrial Pollution. Cambridge University Press. Cambridge.
Bargali, K. & S. S. Bargali. 2016. Germination capacity of seeds of leguminous plants under water deficit conditions: implication for restoration of degraded lands in Kumaun Himalaya. Tropical Ecology 57: 445–453.
Boyd, R. S. 2007. The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant and Soil 293: 153–176.
Bulajic, A., I. Djekic, N. Lakic & B. Krstic. 2009. The presence of Alternaria spp. on the seed of Apiaceae plants and their influence on seed emergence. Archives of Biological Sciences 61: 871–881.
Carlile, M. J., S. C. Watkinson & G. W. Gooday. 2001. The Fungi. (Gulf Professionnal Publishing, Ed.). Academic Press. New York, N.Y., USA.
Cervantes, C. & F. Gutiérrez-Corona. 1994. Copper resistance mechanism in bacteria and fungi. FEMS Microbiology Reviews 14: 121–138.
Chipeng, F. K., C. Hermans, G. Colinet, M. P. Faucon, M. Ngongo, P. Meerts & N. Verbruggen. 2010. Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant and Soil 328: 235–244.
Di Salvatore, M., A. Carafa & G. Carratù. 2008. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere 73: 1461–1464.
Duvigneaud, P. & S. Denaeyer-De Smet. 1963. Etudes sur la végétation du Katanga et de ses sols métallifères. Communication n°7 Cuivre et végétation au Katanga. Bulletin de La Société Royale de Botanique de Belgique 96: 93–231.
Faucon, M. P., A. Meersseman, M. N. Shutcha, G. Mahy, M. N. Luhembwe, F. Malaisse, O. Poureet & P. Meerts. 2010. Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecology and Evolution 143: 5–18.
Faucon, M. P., F. Chipeng, N. Verbruggen, G. Mahy, G. Colinet, M. Shutcha & P. Meerts. 2012. Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environmental and Experimental Botany 84: 11–16.
Fones, H., C. R. Davis, A. Rico, F. Fang, J. A. C. Smith & G. M. Preston. 2010. Metal hyperaccumulation armors plants against disease. PLoS Pathogens 6: 1–13.
Gankin, R. & J. Major. 1964. Arctostaphylos myrtifolia, its biology and relationship to the problem of endemism. Ecology 45: 792–808.
Godefroid, S., A. Van de Vyver, W. Massengo Kalenga, G. Handjila Minengo, C. Rose, M. Ngongo Luhembwe, T. Vanderborght & G. Mahy. 2013. Germination capacity and seed storage behaviour of threatened metallophytes from the Katanga copper belt (DR Congo): implications for ex situ conservation. Plant Ecology and Evolution 146: 183–192.
Kumari, S. & R. Ichhpujani. 2000. Guidelines on standard operating procedures for Microbiology. World Health Organization.
Monty, A., J. P. Bizoux, J. Escarré & G. Mahy. 2013. Rapid Plant Invasion in Distinct Climates Involves Different Sources of Phenotypic Variation. PLoS ONE 8: 0055627.
Myers, N., R. Mittermeier, C. G. Mittermeier, G. da Fonseca & J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.
Peng, H., Q. Wang-Müller, T. Witt, F. Malaisse & H. Küpper. 2012. Differences in copper accumulation and copper stress between eight populations of Haumaniastrum katangense. Environmental and Experimental Botany 79: 58–65.
Pollard, A. J., K. D. Powell, F. A. Harper & J. A. C. Smith. 2002. The Genetic Basis of Metal Hyperaccumulation in Plants. Critical Reviews in Plant Sciences 21: 539–566.
Primack, R. B. 2010. Essentials of Conservation Biology. Sinauer Associates, Incorporated.
R Development Core Team, 2010. A Language and Environment for Statistical Computing. Vienna (Austria).
Roach D. & R. D. Wulf. 1987. Maternal effects in plants. Annual Review of Ecology and Systematics 1987: 209–235
Saad L., I. Parmentier, G. Colinet, F. Malaisse, M. P. Faucon, P. Meerts & G. Mahy. 2012. Investigating the Vegetation-Soil Relationships on the Copper-Cobalt Rock Outcrops of Katanga (D. R. Congo), an Essential Step in a Biodiversity Conservation Plan. Restoration Ecology 20: 405–415.
Sauer D. & R. Burroughs. 1986. Disinfection of seed surfaces with sodium hypochlorite. Phytopathology 76: 745–749.
Schemske D. W., B. C. Husband, M. H. Ruckelshaus, C. Goodwillie, I. M. Parker & J. G. Bishop. 1994. Evaluating Approaches to the Conservation of Rare and Endangered Plants. Ecological Society of America 75: 584–606.
Silveira, F. A. O., D. Negreiros, B. D. Ranieri, C. A. Silva, L. M. Araujo & G. W. Fernandes. 2014. Effect of seed storage on germination, seedling growth and survival of Mimosa foliolosa (Fabaceae): Implications for seed banks and restoration ecology. Tropical Ecology 55: 385–392.
Street R. A., M. G. Kulkarni, W. A. Stirk, C. Southway & J. Van Staden. 2007. Toxicity of metal elements on germination and seedling growth of widely used medicinal plants belonging to Hyacinthaceae. Bulletin of Environmental Contamination and Toxicology 79: 371–376.
Tadros T. T. M. 1957. Evidence of the presence of an edapho-biotic factor in the problem of serpentine tolerance. Ecology 38: 14–23.
UNEP. (2007). Annual Report. United Nations Environment Programme. Retrieved from http://www.unep.org/Documents.multilingual/Default.asp?DocumentID=67&ArticleID=5743&l=en.
Whiting S. N., R. D. Reeves & A. J. M. Baker. 2002. Conserving biodiversity: Mining, metallophytes and land reclamation. Mining Environmental Management 10: 11–16.