Planavsky, N., et al. Iron isotope composition of some Archean and Proterozoic iron formations. Geochim. Cosmochim. Acta 80, 158-169 (2012).
Lyons, T. W., Reinhard, C. T., Planavsky, N. J. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506, 307-315 (2014).
Rasmussen, B., et al. Deposition of 1. 88-billion-year-old iron formations as a consequence of rapid crustal growth. Nature 484, 498-501 (2012).
Fortin, D., Langley, S. Formation and occurrence of biogenic iron-rich minerals. Earth Sci. Rev. 72, 1-19 (2005).
Klueglein, N., et al. Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl. Environ. Microbiol. 80, 1051-1061 (2014).
Kappler, A., Newman, D. K. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68, 1217-1226 (2004).
Planavsky, N. J., et al. Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat. Geosci. 7, 283-286 (2014).
Thomazo, C., Ader, M., Philippot, P. Extreme 15N-enrichments in 2. 72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9, 107-120 (2011).
Swanner, E. D., et al. Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity. Nat. Geosci. 8, 126-130 (2015).
Swanner, E. D., et al. Physiology, Fe(II) oxidation, Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions. Front. Earth Sci. 3, 60 (2015).
Barghoorn, E. S., Tyler, S. A. Microorganisms from the Gunflint Chert. Science 147, 563-575 (1965).
Shapiro, R. S., Konhauser, K. O. Hematite-coated microfossils: primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic Geobiology 13, 209-224 (2015).
Walter, M. R., Goode, D. T., Hall, W. D. M. Microfossils from a newly discovered Precambrian stromatolitic iron formation in Western Australia. Nature 261, 221-223 (1976).
Planavsky, N., et al. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth Planet. Sci. Lett. 286, 230-242 (2009).
Wacey, D., et al. Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the B1. 9-Ga Gunflint chert. Proc. Natl Acad. Sci. USA 110, 8020-8024 (2013).
Awramik, S. M., Barghoorn, E. S. The Gunflint microbiota. Precambrian Res. 5, 121-142 (1977).
Boal, D., Ng, R. Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria. Paleobiology 36, 555-572 (2010).
Cloud, P. Significance of the Gunflint (Precambrian) microflora. Science 148, 27-35 (1965).
Schopf, J. W., et al. Sulfur-cycling fossil bacteria from the 1. 8-Ga Duck Creek Formation provide promising evidence of evolution's null hypothesis. Proc. Natl Acad. Sci. USA 112, 2087-2092 (2015).
Schopf, J. W. Precambrian paleobiology: problems and perspectives. Annu. Rev. Earth Planet. Sci. 3, 213-249 (1975).
Strother, P. K., Tobin, K. Observations on the genus Huroniospora Barghoorn: implications for paleoecology of the Gunflint microbiota. Precambrian Res. 36, 323-333 (1987).
Igisu, M., et al. Micro-FTIR spectroscopic signatures of bacterial lipids in Proterozoic microfossils. Precambrian Res. 173, 19-26 (2009).
House, C. H., et al. Carbon isotopic composition of individual Precambrian microfossils. Geology 28, 707-710 (2000).
Williford, K. H., et al. Preservation and detection of microstructural and taxonomic correlations in the carbon isotopic compositions of individual Precambrian microfossils. Geochim. Cosmochim. Acta 104, 165-182 (2013).
Pearson, A. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N. ) Ch. 9, 143-156 (Springer-Verlag, 2010).
Knoll, A. H., Barghoorn, E. S., Awramik, S. M. New microorganisms from the Aphebian Gunflint Iron Formation, Ontario. J. Paleontol. 52, 976-992 (1978).
Siegel, B. Z., Siegel, S. M. Biology of the Precambrian genus Kakabekia: new oservations on living Kakabekia barghoorniana. Proc. Natl Acad. Sci. USA 67, 1005-1010 (1970).
Moreau, J. W., Sharp, T. G. A transmission electron microscopy study of silica and kerogen biosignatures in-1. 9 Ga gunflint microfossils. Astrobiology 4, 196-210 (2004).
Schadler, S., et al. Formation of cell-Iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria. Geomicrobiol. J. 26, 93-103 (2009).
Alleon, J., et al. Molecular preservation of 1. 88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nat. Commun. 7, 11977 (2016).
Floran, R. J., Papike, J. J. Petrology of the low-grade rocks of the Gunflint Iron-Formation, Ontario-Minnesota. Geol. Soc. Am. Bull. 86, 1169-1190 (1975).
Javaux, E. J., Knoll, A. H., Walter, M. R. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2, 121-132 (2004).
Campbell, K. A., et al. Tracing biosignature preservation of geothermally silicified microbial textures into the geological record. Astrobiology 15, 858-882 (2015).
Wood, S. A., Paul, W. J., Hamilton, D. P. Cyanobacterial Biovolumes for the Rotorua Lakes. Prepared for Environment Bay of Plenty. (Cawthron Report No. 1054, 2008).
Hanada, S. Filamentous anoxygenic phototrophs in hot springs. Microbes Environ. 18, 51-61 (2003).
Vigliotta, G., et al. Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic g-proteobacterium. Appl. Environ. Microbiol. 73, 3556-3565 (2007).
van Veen, W. L., Mulder, E. G., Deinema, M. H. The sphaerotilus-leptothrix group of bacteria. Microbiol. Rev. 42, 329-356 (1978).
Fukui, M., Teske, A., A-mus, B., Muyzer, G., Widdel, F. Physiology, phylogenetic relationships, ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch. Microbiol. 172, 193-203 (1999).
Emerson, D., Fleming, E. J., McBeth, J. M. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu. Rev. Microbiol. 64, 561-583 (2010).
Brown, I. I., et al. Polyphasic characterization of a thermotolerant siderophilic filamentous cyanobacterium that produces intracellular iron deposits. Appl. Environ. Microbiol. 76, 6664-6672 (2010).
Graham, L. E., Wilcox, L. W. Algae (Prentice Hall, 2000).
Mulholland, D. S., et al. Iron isotope fractionation during Fe(II) and Fe(III) adsorption on cyanobacteria. Chem. Geol. 400, 24-33 (2015).
Percak-Dennett, E. M., et al. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Geobiology 9, 205-220 (2011).
Koehler, I., Konhauser, K. O., Papineau, D., Bekker, A., Kappler, A. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nat. Commun. 4, 1741 (2013).
Shcolnick, S., Summerfield, T. C., Reytman, L., Sherman, L. A., Keren, N. The mechanism of Iron homeostasis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 and its relationship to oxidative stress. Plant Physiol. 150, 2045-2056 (2009).
Blakemore, R. Magnetotactic bacteria. Science 190, 377-379 (1975).
Brayner, R., et al. Intracellular biosynthesis of superparamagnetic 2-lines ferrihydrite nanoparticles using Euglena gracilis microalgae. Colloids Surf. B Biointerfaces 93, 20-23 (2012).
Glasauer, S., Langley, S., Beveridge, T. J. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295, 117-119 (2002).
Brayner, R., et al. Photosynthetic microorganism-mediated synthesis of akaganeite (b-FeOOH) nanorods. Langmuir 25, 10062-10067 (2009).
Konhauser, K. O., Ferris, F. G. Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: implications for Precambrian iron formations. Geology 24, 323-326 (1996).
Parenteau, M. N., Cady, S. L. Microbial biosignatures in iron-mineralized phototrophic mats at Chocolate Pots hot springs, Yellowstone national park, United States. Palaios 25, 97-111 (2010).
Ferris, F. G., Fyfe, W. S., Beveridge, T. J. Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16, 149-152 (1988).
Degens, E. T., Watson, S. W., Remsen, C. C. Fossil membranes and cell wall fragments from a 7000-year-old Black Sea sediment. Science 168, 1207-1208 (1970).
Fortin, D., Ferris, F. G., Scott, S. D. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean. Am. Mineral. 83, 1399-1408 (1998).
Roden, E. E., et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3, 417-421 (2010).
Wacey, D., et al. Enhanced cellular preservation by clay minerals in 1 billionyear-old lakes. Sci. Rep. 4, 5841 (2014).
Bernard, S., et al. Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. Earth Planet. Sci. Lett. 262, 257-272 (2007).
Mustoe, G., Acosta, M. Origin of petrified wood color. Geosciences 6, 25 (2016).
Schweitzer, M. H., et al. A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proc. R. Soc. B 281, 20132741 (2014).
Kunoh, T., et al. Abiotic deposition of Fe complexes onto Leptothrix sheaths. Biology 5, 26 (2016).
de Leeuw, J. W., Versteegh, G. J. M., van Bergen, P. F. Biomacromolecules of algae and plants and their fossil analogues. Plant Ecol. 182, 209-233 (2006).
Cheung, H.-Y., et al. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli. PLoS ONE 7, e36659 (2012).
Lemelle, L., et al. In situ imaging of organic sulfur in 700-800My-old Neoproterozoic microfossils using X-ray spectromicroscopy at the S K-edge. Org. Geochem. 39, 188-202 (2008).
Tibbs, S. L., Briggs, D. E. G., Prossl, K. F. Pyritisation of plant microfossils from the Devonian Hunsriick Slate of Germany. Palaontol. Z 77, 241-246 (2003).
Garcia-Guinea, J., Martinez-Fras, J., Harffy, M. Cell-hosted pyrite framboids in fossil woods. Naturwissenschaften 85, 78-81 (1998).
Brake, S., Hasiotis, S. T., Dannelly, H. K., Connors, K. A. Eukaryotic stromatolite builders in acid mine drainage: implications for Precambrian iron formations and oxygenation of the atmosphere Geology 30, 599-602 (2002).
Glasauer, S., et al. Mixed-valence cytoplasmic Iron granules are linked to anaerobic respiration. Appl. Environ. Microbiol. 73, 993-996 (2007).
Konhauser, K. O., Urutia, M. M. Bacterial clay authigenesis: a common biogeochemical process. Chem. Geol. 161, 399-413 (1999).
Cosmidis, J., et al. Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim. Cosmochim. Acta 126, 78-96 (2014).
Carr, N. G., Whitton, B. A. The Biology of Cyanobacteria (Blackwell Scientific, 1982).