Mort, R.L., Jackson, I.J., Patton, E.E., The melanocyte lineage in development and disease. Development, 142(7), 2015, 1387.
Houghton, A.N., Polsky, D., Focus on melanoma. Cancer Cell 2:4 (2002), 275–278.
Mihajlovic, M., Vlajkovic, S., Jovanovic, P., Stefanovic, V., Primary mucosal melanomas: a comprehensive review. Int. J. Clin. Exp. Pathol. 5:8 (2012), 739–753.
Faries, M.B., Ariyan, S., Current surgical treatment in melanoma. Curr. Probl. Cancer 35:4 (2011), 173–184.
Sosman, J.A., Kim, K.B., Schuchter, L., Gonzalez, R., Pavlick, A.C., Weber, J.S., McArthur, G.A., Hutson, T.E., Moschos, S.J., Flaherty, K.T., Hersey, P., Kefford, R., Lawrence, D., Puzanov, I., Lewis, K.D., Amaravadi, R.K., Chmielowski, B., Lawrence, H.J., Shyr, Y., Ye, F., Li, J., Nolop, K.B., Lee, R.J., Joe, A.K., Ribas, A., Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366:8 (2012), 707–714.
McArthur, G.A., Chapman, P.B., Robert, C., Larkin, J., Haanen, J.B., Dummer, R., Ribas, A., Hogg, D., Hamid, O., Ascierto, P.A., Garbe, C., Testori, A., Maio, M., Lorigan, P., Lebbe, C., Jouary, T., Schadendorf, D., O'Day, S.J., Kirkwood, J.M., Eggermont, A.M., Dreno, B., Sosman, J.A., Flaherty, K.T., Yin, M., Caro, I., Cheng, S., Trunzer, K., Hauschild, A., Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600 K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 15:3 (2014), 323–332.
Grossman, D., Altieri, D.C., Drug resistance in melanoma: mechanisms, apoptosis, and new potential therapeutic targets. Cancer Metastasis Rev. 20:1–2 (2001), 3–11.
Somasundaram, R., Villanueva, J., Herlyn, M., Intratumoral heterogeneity as a therapy resistance mechanism: role of melanoma subpopulations. Adv. Pharmacol. 65 (2012), 335–359.
Read, J., Recent advances in cutaneous melanoma: towards a molecular model and targeted treatment. Australas. J. Dermatol. 54:3 (2013), 163–172.
Flaherty, K.T., Puzanov, I., Kim, K.B., Ribas, A., McArthur, G.A., Sosman, J.A., O'Dwyer, P.J., Lee, R.J., Grippo, J.F., Nolop, K., Chapman, P.B., Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363:9 (2010), 809–819.
Chapman, P.B., Hauschild, A., Robert, C., Haanen, J.B., Ascierto, P., Larkin, J., Dummer, R., Garbe, C., Testori, A., Maio, M., Hogg, D., Lorigan, P., Lebbe, C., Jouary, T., Schadendorf, D., Ribas, A., O'Day, S.J., Sosman, J.A., Kirkwood, J.M., Eggermont, A.M., Dreno, B., Nolop, K., Li, J., Nelson, B., Hou, J., Lee, R.J., Flaherty, K.T., McArthur, G.A., Group, B.-S., Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364:26 (2011), 2507–2516.
Larkin, J., Ascierto, P.A., Dreno, B., Atkinson, V., Liszkay, G., Maio, M., Mandala, M., Demidov, L., Stroyakovskiy, D., Thomas, L., de la Cruz-Merino, L., Dutriaux, C., Garbe, C., Sovak, M.A., Chang, I., Choong, N., Hack, S.P., McArthur, G.A., Ribas, A., Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371:20 (2014), 1867–1876.
Medina, T.M., Lewis, K.D., The evolution of combined molecular targeted therapies to advance the therapeutic efficacy in melanoma: a highlight of vemurafenib and cobimetinib. Onco Targets Ther. 9 (2016), 3739–3752.
Olszanski, A.J., Current and future roles of targeted therapy and immunotherapy in advanced melanoma. J. Manage. Care Spec. Pharm. 20:4 (2014), 346–356.
Hodi, F.S., O'Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J.C., Akerley, W., van den Eertwegh, A.J., Lutzky, J., Lorigan, P., Vaubel, J.M., Linette, G.P., Hogg, D., Ottensmeier, C.H., Lebbe, C., Peschel, C., Quirt, I., Clark, J.I., Wolchok, J.D., Weber, J.S., Tian, J., Yellin, M.J., Nichol, G.M., Hoos, A., Urba, W.J., Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:8 (2010), 711–723.
Weber, J.S., Kahler, K.C., Hauschild, A., Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 30:21 (2012), 2691–2697.
Ribas, A., Hodi, F.S., Callahan, M., Konto, C., Wolchok, J., Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 368:14 (2013), 1365–1366.
Postow, M.A., Chesney, J., Pavlick, A.C., Robert, C., Grossmann, K., McDermott, D., Linette, G.P., Meyer, N., Giguere, J.K., Agarwala, S.S., Shaheen, M., Ernstoff, M.S., Minor, D., Salama, A.K., Taylor, M., Ott, P.A., Rollin, L.M., Horak, C., Gagnier, P., Wolchok, J.D., Hodi, F.S., Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372:21 (2015), 2006–2017.
Norgauer, J., Metzner, B., Schraufstatter, I., Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells. J. Immunol. 156:3 (1996), 1132–1137.
Justus, C.R., Sanderlin, E.J., Yang, L.V., Molecular connections between cancer cell metabolism and the tumor microenvironment. Int. J. Mol. Sci. 16:5 (2015), 11055–11086.
Fukunaga-Kalabis, M., Santiago-Walker, A., Herlyn, M., Matricellular proteins produced by melanocytes and melanomas: in search for functions. Cancer Microenviron. 1:1 (2008), 93–102.
Junttila, M.R., de Sauvage, F.J., Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:7467 (2013), 346–354.
Straussman, R., Morikawa, T., Shee, K., Barzily-Rokni, M., Qian, Z.R., Du, J., Davis, A., Mongare, M.M., Gould, J., Frederick, D.T., Cooper, Z.A., Chapman, P.B., Solit, D.B., Ribas, A., Lo, R.S., Flaherty, K.T., Ogino, S., Wargo, J.A., Golub, T.R., Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:7408 (2012), 500–504.
Meads, M.B., Gatenby, R.A., Dalton, W.S., Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat. Rev. Cancer 9:9 (2009), 665–674.
Jain, R.K., Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:5706 (2005), 58–62.
Swami, A., Shi, J., Gadde, S., Votruba, A.R., Kolishetti, N., Farokhzad, O.C., Nanoparticles for targeted and temporally controlled drug delivery. Nanostruct. Sci. Technol., 2012, 9–29.
Choi, H.S., Liu, W., Misra, P., Tanaka, E., Zimmer, J.P., Itty Ipe, B., Bawendi, M.G., Frangioni, J.V., Renal clearance of quantum dots. Nat. Biotechnol. 25:10 (2007), 1165–1170.
Harashima, H., Sakata, K., Funato, K., Kiwada, H., Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm. Res. 11:3 (1994), 402–406.
Devine, D.V., Wong, K., Serrano, K., Chonn, A., Cullis, P.R., Liposome-complement interactions in rat serum: implications for liposome survival studies. Biochim. Biophys. Acta 1191:1 (1994), 43–51.
Saha, R.N., Vasanthakumar, S., Bende, G., Snehalatha, M., Nanoparticulate drug delivery systems for cancer chemotherapy. Mol. Membr. Biol. 27:7 (2010), 215–231.
Mundra, V., Peng, Y., Rana, S., Natarajan, A., Mahato, R.I., Micellar formulation of indocyanine green for phototherapy of melanoma. J. Control Release 220:Pt A (2015), 130–140.
Shan, X., Yuan, Y., Liu, C., Tao, X., Sheng, Y., Xu, F., Influence of PEG chain on the complement activation suppression and longevity in vivo prolongation of the PCL biomedical nanoparticles. Biomed. Microdevices 11:6 (2009), 1187–1194.
Arvizo, R.R., Miranda, O.R., Moyano, D.F., Walden, C.A., Giri, K., Bhattacharya, R., Robertson, J.D., Rotello, V.M., Reid, J.M., Mukherjee, P., Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One, 6(9), 2011, e24374.
Xiao, K., Li, Y., Luo, J., Lee, J.S., Xiao, W., Gonik, A.M., Agarwal, R.G., Lam, K.S., The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32:13 (2011), 3435–3446.
Lacoeuille, F., Garcion, E., Benoit, J.P., Lamprecht, A., Lipid nanocapsules for intracellular drug delivery of anticancer drugs. J. Nanosci. Nanotechnol. 7:12 (2007), 4612–4617.
Lollo, G., Vincent, M., Ullio-Gamboa, G., Lemaire, L., Franconi, F., Couez, D., Benoit, J.P., Development of multifunctional lipid nanocapsules for the co-delivery of paclitaxel and CpG-ODN in the treatment of glioblastoma. Int. J. Pharm. 495:2 (2015), 972–980.
Hureaux, J., Lagarce, F., Gagnadoux, F., Rousselet, M.C., Moal, V., Urban, T., Benoit, J.P., Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice. Pharm. Res. 27:3 (2010), 421–430.
Occhiutto, M.L., Freitas, F.R., Lima, P.P., Maranhao, R.C., Costa, V.P., Paclitaxel associated with lipid nanoparticles as a new antiscarring agent in experimental glaucoma surgery. Invest. Ophthalmol. Vis. Sci. 57:3 (2016), 971–978.
Xu, W., Lee, M.-K., Development and evaluation of lipid nanoparticles for paclitaxel delivery: a comparison between solid lipid nanoparticles and nanostructured lipid carriers. J. Pharm. Investig. 45:7 (2015), 675–680.
Resnier, P., LeQuinio, P., Lautram, N., Andre, E., Gaillard, C., Bastiat, G., Benoit, J.P., Passirani, C., Efficient in vitro gene therapy with PEG siRNA lipid nanocapsules for passive targeting strategy in melanoma. Biotechnol. J. 9:11 (2014), 1389–1401.
Mei, L., Liu, Y., Zhang, H., Zhang, Z., Gao, H., He, Q., Antitumor and antimetastasis activities of heparin-based micelle served As both carrier and drug. ACS Appl. Mater. Interfaces 8:15 (2016), 9577–9589.
Talelli, M., Iman, M., Varkouhi, A.K., Rijcken, C.J., Schiffelers, R.M., Etrych, T., Ulbrich, K., van Nostrum, C.F., Lammers, T., Storm, G., Hennink, W.E., Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials 31:30 (2010), 7797–7804.
Battogtokh, G., Ko, Y.T., Self-assembling micelle-like nanoparticles with detachable envelopes for enhanced delivery of nucleic acid therapeutics. Mol. Pharm. 11:3 (2014), 904–912.
Van Butsele, K., Sibret, P., Fustin, C.A., Gohy, J.F., Passirani, C., Benoit, J.P., Jerome, R., Jerome, C., Synthesis and pH-dependent micellization of diblock copolymer mixtures. J. Colloid Interface Sci. 329:2 (2009), 235–243.
Cajot, S., Van Butsele, K., Paillard, A., Passirani, C., Garcion, E., Benoit, J.P., Varshney, S.K., Jerome, C., Smart nanocarriers for pH-triggered targeting and release of hydrophobic drugs. Acta Biomater. 8:12 (2012), 4215–4223.
Schittenhelm, J., Klein, A., Tatagiba, M.S., Meyermann, R., Fend, F., Goodman, S.L., Sipos, B., Comparing the expression of integrins αvβ3, αvβ5, αvβ6, αvβ8, fibronectin and fibrinogen in human brain metastases and their corresponding primary tumors. Int. J. Clin. Exp. Pathol. 6:12 (2013), 2719–2732.
Shi, K., Li, J., Cao, Z., Yang, P., Qiu, Y., Yang, B., Wang, Y., Long, Y., Liu, Y., Zhang, Q., Qian, J., Zhang, Z., Gao, H., He, Q., A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin αvβ3 for the treatment of melanoma. J. Control. Release 217 (2015), 138–150.
Chen, J.X., Wang, M., Tian, H.H., Chen, J.H., Hyaluronic acid and polyethylenimine self-assembled polyion complexes as pH-sensitive drug carrier for cancer therapy. Colloids Surf. B Biointerfaces 134 (2015), 81–87.
Chen, C.Y., Kim, T.H., Wu, W.C., Huang, C.M., Wei, H., Mount, C.W., Tian, Y., Jang, S.H., Pun, S.H., Jen, A.K., pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials 34:18 (2013), 4501–4509.
Zhao, Y., Ji, T., Wang, H., Li, S., Zhao, Y., Nie, G., Self-assembled peptide nanoparticles as tumor microenvironment activatable probes for tumor targeting and imaging. J. Control. Release 177:1 (2014), 11–19.
Mi, Y., Wolfram, J., Mu, C., Liu, X., Blanco, E., Shen, H., Ferrari, M., Enzyme-responsive multistage vector for drug delivery to tumor tissue. Pharmacol. Res. 113:Pt A (2016), 92–99.
Saraf, P., Li, X., Wrischnik, L., Jasti, B., In vitro and in vivo efficacy of self-assembling rgd peptide amphiphiles for targeted delivery of paclitaxel. Pharm. Res. 32:9 (2015), 3087–3101.
Lin, C.H., Al-Suwayeh, S.A., Hung, C.F., Chen, C.C., Fang, J.Y., Camptothecin-loaded liposomes with alpha-melanocyte-stimulating hormone enhance cytotoxicity toward and cellular uptake by melanomas: an application of nanomedicine on natural product. J. Tradit. Complement. Med. 3:2 (2013), 102–109.
Pawar, S., Vavia, P., Glucosamine anchored cancer targeted nano-vesicular drug delivery system of doxorubicin. J. Drug Target 24:1 (2016), 68–79.
Volkova, M., Russell, R., Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr. Cardiol. Rev. 7:4 (2011), 214–220.
O'Brien, M.E., Wigler, N., Inbar, M., Rosso, R., Grischke, E., Santoro, A., Catane, R., Kieback, D.G., Tomczak, P., Ackland, S.P., Orlandi, F., Mellars, L., Alland, L., Tendler, C., Group, C.B.C.S., Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. 15:3 (2004), 440–449.
Longmire, M., Choyke, P.L., Kobayashi, H., Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.) 3:5 (2008), 703–717.
Zhdanov, V.P., Cho, N.J., Kinetics of the formation of a protein corona around nanoparticles. Math. Biosci. 282 (2016), 82–90.
Thakkar, A., Chenreddy, S., Thio, A., Khamas, W., Wang, J., Prabhu, S., Preclinical systemic toxicity evaluation of chitosan-solid lipid nanoparticle-encapsulated aspirin and curcumin in combination with free sulforaphane in BALB/c mice. Int. J. Nanomed. 11 (2016), 3265–3276.
Xu, H., Hu, M., Yu, X., Li, Y., Fu, Y., Zhou, X., Zhang, D., Li, J., Design and evaluation of pH-sensitive liposomes constructed by poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate for doxorubicin delivery. Eur. J. Pharm. Biopharm. 91:3 (2015), 66–74.
Wang, Q.M., Gao, Z., Liu, S., Fan, B., Kang, L., Huang, W., Jin, M., Hybrid polymeric micelles based on bioactive polypeptides as pH-responsive delivery systems against melanoma. Biomaterials 35:25 (2014), 7008–7021.
Poon, W., Zhang, X., Bekah, D., Teodoro, J.G., Nadeau, J.L., Targeting B16 tumors in vivo with peptide-conjugated gold nanoparticles. Nanotechnology, 26(28), 2015, 285101.
Shen, T., Guan, S., Gan, Z., Zhang, G., Yu, Q., Polymeric micelles with uniform surface properties and tunable size and charge: positive charges improve tumor accumulation. Biomacromolecules 17:5 (2016), 1801–1810.
Liu, Q., Li, H., Xia, Q., Liu, Y., Xiao, K., Role of surface charge in determining the biological effects of CdSe/ZnS quantum dots. Int. J. Nanomed. 10 (2015), 7073–7088.
Miller, C.R., Bondurant, B., McLean, S.D., McGovern, K.A., O'Brien, D.F., Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 37:37 (1998), 12875–12883.
Chen, L., McCrate, J.M., Lee, J.C., Li, H., The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology, 22(10), 2011, 105708.
Arvizo, R.R., Miranda, O.R., Thompson, M.A., Pabelick, C.M., Bhattacharya, R., Robertson, J.D., Rotello, V.M., Prakash, Y.S., Mukherjee, P., Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 10:7 (2010), 2543–2548.
Knop, K., Hoogenboom, R., Fischer, D., Schubert, U.S., Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49:36 (2010), 6288–6308.
Abuchowski, A., McCoy, J.R., Palczuk, N.C., van Es, T., Davis, F.F., Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252:11 (1977), 3582–3586.
Vonarbourg, A., Passirani, C., Saulnier, P., Benoit, J.P., Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27:24 (2006), 4356–4373.
Lee, H., Larson, R.G., Adsorption of plasma proteins onto PEGylated lipid bilayers: the effect of PEG size and grafting density. Biomacromolecules 17:5 (2016), 1757–1765.
Wu, H., Infante, J.R., Keedy, V.L., Jones, S.F., Chan, E., Bendell, J.C., Lee, W., Zamboni, B.A., Ikeda, S., Kodaira, H., Rothenberg, M.L., Zamboni, H.A., Burris, W.C. 3rd, Population pharmacokinetics of PEGylated liposomal CPT-11 (IHL-305) in patients with advanced solid tumors. Eur. J. Clin. Pharmacol. 69:12 (2013), 2073–2081.
Infante, J.R., Keedy, V.L., Jones, S.F., Zamboni, W.C., Chan, E., Bendell, J.C., Lee, W., Wu, H., Ikeda, S., Kodaira, H., Rothenberg, M.L., Burris, H.A. 3rd, Phase I and pharmacokinetic study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 70:5 (2012), 699–705.
Yang, J., Shi, Y., Li, C., Gui, L., Zhao, X., Liu, P., Han, X., Song, Y., Li, N., Du, P., Zhang, S., Phase I clinical trial of pegylated liposomal mitoxantrone plm60-s: pharmacokinetics, toxicity and preliminary efficacy. Cancer Chemother. Pharmacol. 74:3 (2014), 637–646.
Golan, T., Grenader, T., Ohana, P., Amitay, Y., Shmeeda, H., La-Beck, N.M., Tahover, E., Berger, R., Gabizon, A.A., Pegylated liposomal mitomycin C prodrug enhances tolerance of mitomycin C: a phase 1 study in advanced solid tumor patients. Cancer Med. 4:10 (2015), 1472–1483.
Lee, J.L., Ahn, J.H., Park, S.H., Lim, H.Y., Kwon, J.H., Ahn, S., Song, C., Hong, J.H., Kim, C.S., Ahn, H., Phase II study of a cremophor-free, polymeric micelle formulation of paclitaxel for patients with advanced urothelial cancer previously treated with gemcitabine and platinum. Invest. New Drugs 30:5 (2012), 1984–1990.
Ishak, R.A., Awad, G.A., Zaki, N.M., El-Shamy Ael, H., Mortada, N.D., A comparative study of chitosan shielding effect on nano-carriers hydrophilicity and biodistribution. Carbohydr. Polym. 94:1 (2013), 669–676.
Kierstead, P.H., Okochi, H., Venditto, V.J., Chuong, T.C., Kivimae, S., Frechet, J.M., Szoka, F.C., The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J. Control Release 213 (2015), 1–9.
Zhang, W., Wang, G., See, E., Shaw, J.P., Baguley, B.C., Liu, J., Amirapu, S., Wu, Z., Post-insertion of poloxamer 188 strengthened liposomal membrane and reduced drug irritancy and in vivo precipitation, superior to PEGylation. J. Control Release 203 (2015), 161–169.
Kolhar, P., Anselmo, A.C., Gupta, V., Pant, K., Prabhakarpandian, B., Ruoslahti, E., Mitragotri, S., Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. U. S. A. 110:26 (2013), 10753–10758.
Herringson, T.P., Altin, J.G., Increasing the antitumor efficacy of doxorubicin-loaded liposomes with peptides anchored via a chelator lipid. J. Drug Target 19:8 (2011), 681–689.
Lohade, A.A., Jain, R.R., Iyer, K., Roy, S.K., Shimpi, H.H., Pawar, Y., Rajan, M.G., Menon, M.D., A novel folate-targeted nanoliposomal system of doxorubicin for cancer targeting. AAPS PharmSciTech 17:6 (2016), 1298–1311.
Pawar, S., Shevalkar, G., Vavia, P., Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: pharmacokinetic, toxicity and pharmacodynamic evaluation. J. Drug Target 24:8 (2016), 730–743.
Heurtault, B., Saulnier, P., Pech, B., Venier-Julienne, M.-C., Proust, J.-E., Phan-Tan-Luu, R., Benoı̂t, J.-P., The influence of lipid nanocapsule composition on their size distribution. Eur. J. Pharm. Sci. 18:1 (2003), 55–61.
Rennke, H.G., Venkatachalam, M.A., Structural determinants of glomerular permselectivity. Fed. Proc. 36:12 (1977), 2519–2526.
Ohlson, M., Sorensson, J., Haraldsson, B., A gel-membrane model of glomerular charge and size selectivity in series. Am. J. Physiol. Renal Physiol. 280:3 (2001), F396–405.
Chen, L.T., Weiss, L., The role of the sinus wall in the passage of erythrocytes through the spleen. Blood 41:4 (1973), 529–537.
He, C., Hu, Y., Yin, L., Tang, C., Yin, C., Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:13 (2010), 3657–3666.
Vonarbourg, A., Passirani, C., Saulnier, P., Simard, P., Leroux, J.C., Benoit, J.P., Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J. Biomed. Mater. Res. A 78:3 (2006), 620–628.
Hillaireau, H., Couvreur, P., Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66:17 (2009), 2873–2896.
Murugan, K., Choonara, Y.E., Kumar, P., Bijukumar, D., du Toit, L.C., Pillay, V., Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int. J. Nanomed. 10 (2015), 2191–2206.
Rejman, J., Oberle, V., Zuhorn, I.S., Hoekstra, D., Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377:Pt 1 (2004), 159–169.
Sahay, G., Alakhova, D.Y., Kabanov, A.V., Endocytosis of nanomedicines. J. Control Release 145:3 (2010), 182–195.
Passirani, C., Barratt, G., Devissaguet, J.P., Labarre, D., Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system. Life Sci. 62:8 (1998), 775–785.
Toy, R., Peiris, P.M., Ghaghada, K.B., Karathanasis, E., Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond.) 9:1 (2014), 121–134.
Gratton, S.E., Ropp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E., DeSimone, J.M., The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A. 105:33 (2008), 11613–11618.
Champion, J.A., Mitragotri, S., Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103:13 (2006), 4930–4934.
Doshi, N., Mitragotri, S., Macrophages recognize size and shape of their targets. PLoS One, 5(4), 2010, e10051.
Sharma, G., Valenta, D.T., Altman, Y., Harvey, S., Xie, H., Mitragotri, S., Smith, J.W., Polymer particle shape independently influences binding and internalization by macrophages. J. Control Release 147:3 (2010), 408–412.
Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., Discher, D.E., Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2:4 (2007), 249–255.
Black, K.C., Wang, Y., Luehmann, H.P., Cai, X., Xing, W., Pang, B., Zhao, Y., Cutler, C.S., Wang, L.V., Liu, Y., Xia, Y., Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 8:5 (2014), 4385–4394.
Tan, J., Shah, S., Thomas, A., Ou-Yang, H.D., Liu, Y., The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluid. 14:1–2 (2013), 77–87.
Qiu, Y., Liu, Y., Wang, L., Xu, L., Bai, R., Ji, Y., Wu, X., Zhao, Y., Li, Y., Chen, C., Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:30 (2010), 7606–7619.
Huang, X., Teng, X., Chen, D., Tang, F., He, J., The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:3 (2010), 438–448.
Naguib, Y.W., Rodriguez, B.L., Li, X., Hursting, S.D., Cui, R.O., Williams, Z. 3rd, Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: in vitro and in vivo evaluation. Mol. Pharm. 11:4 (2014), 1239–1249.
Pawar, H., Surapaneni, S.K., Tikoo, K., Singh, C., Burman, R., Gill, M.S., Suresh, S., Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin solid lipid nanoparticles: in vitro evaluation, pharmacokinetic and biodistribution in rats. Drug Deliv. 23:4 (2016), 1453–1468.
Shi, L.L., Lu, J., Cao, Y., Liu, J.Y., Zhang, X.X., Zhang, H., Cui, J.H., Cao, Q.R., Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel. Drug Dev. Ind. Pharm. 9045:August (2016), 1–8.
Zanotto-Filho, A., Coradini, K., Braganhol, E., Schroder, R., de Oliveira, C.M., Simoes-Pires, A., Battastini, A.M., Pohlmann, A.R., Guterres, S.S., Forcelini, C.M., Beck, R.C., Moreira, J.C., Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur. J. Pharm. Biopharm. 83:2 (2013), 156–167.
Wang, P., Zhang, L., Peng, H., Li, Y., Xiong, J., Xu, Z., The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater. Sci. Eng. C Mater. Biol. Appl. 33:8 (2013), 4802–4808.
Wang, Y., Zhou, L., Xiao, M., Sun, Z.L., Zhang, C.Y., Nanomedicine-based paclitaxel induced apoptotic signaling pathways in A562 leukemia cancer cells. Colloids Surf. B Biointerfaces 149 (2017), 16–22.
Mukai, H., Kato, K., Esaki, T., Ohsumi, S., Hozomi, Y., Matsubara, N., Hamaguchi, T., Matsumura, Y., Goda, R., Hirai, T., Nambu, Y., Phase I study of NK105, a nanomicellar paclitaxel formulation, administered on a weekly schedule in patients with solid tumors. Invest. New Drugs 34:6 (2016), 750–759.
Zhang, Y., Sriraman, S.K., Kenny, H.A., Luther, E., Torchilin, V., Lengyel, E., Reversal of chemoresistance in ovarian cancer by co-delivery of a p-glycoprotein inhibitor and paclitaxel in a liposomal platform. Mol. Cancer Ther. 15:10 (2016), 2282–2293.
Jiang, L., He, B., Pan, D., Luo, K., Yi, Q., Gu, Z., Anti-cancer efficacy of paclitaxel loaded in pH triggered liposomes. J. Biomed. Nanotechnol. 12:1 (2016), 79–90.
Bernabeu, E., Gonzalez, L., Legaspi, M.J., Moretton, M.A., Chiappetta, D.A., Paclitaxel-Loaded TPGS-b-PCL nanoparticles: in vitro cytotoxicity and cellular uptake in MCF-7 and MDA-MB-231Cells versus mPEG-b-PCL nanoparticles and Abraxane®. J. Nanosci. Nanotechnol. 16:1 (2016), 160–170.
Yu, H.H., Mi, W.N., Liu, B., Zhao, H.P., In vitro and in vivo effect of paclitaxel and cepharanthine co-loaded polymeric nanoparticles in gastric cancer. J. BUON 21:1 (2016), 125–134.
Yu, K., Zhao, J., Yu, C., Sun, F., Liu, Y., Zhang, Y., Lee, R.J., Teng, L., Li, Y., Role of four different kinds of polyethylenimines (peis) of in preparation polymeric lipid nanoparticles and their anticancer activity study. J Cancer 7:7 (2016), 872–882.
Resnier, P., Montier, T., Mathieu, V., Benoit, J.P., Passirani, C., A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 34:27 (2013), 6429–6443.
Queirolo, P., Picasso, V., Spagnolo, F., Combined BRAF and MEK inhibition for the treatment of BRAF-mutated metastatic melanoma. Cancer Treat. Rev. 41:6 (2015), 519–526.
Ma, Y., Liu, D., Wang, D., Wang, Y., Fu, Q., Fallon, J.K., Yang, X., He, Z., Liu, F., Combinational delivery of hydrophobic and hydrophilic anticancer drugs in single nanoemulsions to treat MDR in cancer. Mol. Pharm. 11:8 (2014), 2623–2630.
Roy Chowdhury, M., Schumann, C., Bhakta-Guha, D., Guha, G., Cancer nanotheranostics: strategies, promises and impediments. Biomed. Pharmacother. 84 (2016), 291–304.
Rizzitelli, S., Giustetto, P., Faletto, D., Delli Castelli, D., Aime, S., Terreno, E., The release of Doxorubicin from liposomes monitored by MRI and triggered by a combination of US stimuli led to a complete tumor regression in a breast cancer mouse model. J. Control. Release 230 (2016), 57–63.
Cirri, P., Chiarugi, P., Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev. 31:1-2 (2012), 195–208.
Joyce, J.A., Pollard, J.W., Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9:4 (2009), 239–252.
Nie, L., Lyros, O., Medda, R., Jovanovic, N., Schmidt, J.L., Otterson, M.F., Johnson, C.P., Behmaram, B., Shaker, R., Rafiee, P., Endothelial-mesenchymal transition in normal human esophageal endothelial cells cocultured with esophageal adenocarcinoma cells: role of IL-1β and TGF-β2. Am. J. Physiol. Cell Physiol. 307:9 (2014), C859–C877.
Webber, J., Yeung, V., Clayton, A., Extracellular vesicles as modulators of the cancer microenvironment. Semin. Cell Dev. Biol. 40 (2015), 27–34.
Kohlhapp, F.J., Mitra, A.K., Lengyel, E., Peter, M.E., MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene 34:48 (2015), 5857–5868.
Wang, T., Liu, G., Wang, R., The intercellular metabolic interplay between tumor and immune cells. Front. Immunol., 5, 2014, 358.
Bohme, I., Bosserhoff, A.K., Acidic tumor microenvironment in human melanoma. Pigment Cell Melanoma Res. 29:5 (2016), 508–523.
Folkman, J., Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285:21 (1971), 1182–1186.
Jayson, G.C., Kerbel, R., Ellis, L.M., Harris, A.L., Antiangiogenic therapy in oncology: current status and future directions. Lancet 388:10043 (2016), 518–529.
Pastushenko, I., Vermeulen, P.B., Van den Eynden, G.G., Rutten, A., Carapeto, F.J., Dirix, L.Y., Van Laere, S., Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications. Br. J. Dermatol. 171:2 (2014), 220–233.
Giatromanolaki, A., Sivridis, E., Kouskoukis, C., Gatter, K.C., Harris, A.L., Koukourakis, M.I., Hypoxia-inducible factors 1α and 2α are related to vascular endothelial growth factor expression and a poorer prognosis in nodular malignant melanomas of the skin. Melanoma Res. 13:5 (2003), 493–501.
Straume, O., Akslen, L.A., Expresson of vascular endothelial growth factor, its receptors (FLT-1 KDR) and TSP-1 related to microvessel density and patient outcome in vertical growth phase melanomas. Am. J. Pathol. 159:1 (2001), 223–235.
Vaisanen, A.H., Kallioinen, M., Turpeenniemi-Hujanen, T., Comparison of the prognostic value of matrix metalloproteinases 2 and 9 in cutaneous melanoma. Hum. Pathol. 39:3 (2008), 377–385.
Jain, R.K., Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7:9 (2001), 987–989.
Helfrich, I., Scheffrahn, I., Bartling, S., Weis, J., von Felbert, V., Middleton, M., Kato, M., Ergun, S., Augustin, H.G., Schadendorf, D., Resistance to antiangiogenic therapy is directed by vascular phenotype, vessel stabilization, and maturation in malignant melanoma. J. Exp. Med. 207:3 (2010), 491–503.
Akino, T., Hida, K., Hida, Y., Tsuchiya, K., Freedman, D., Muraki, C., Ohga, N., Matsuda, K., Akiyama, K., Harabayashi, T., Shinohara, N., Nonomura, K., Klagsbrun, M., Shindoh, M., Cytogenetic abnormalities of tumor-associated endothelial cells in human malignant tumors. Am. J. Pathol. 175:6 (2009), 2657–2667.
Matsuda, K., Ohga, N., Hida, Y., Muraki, C., Tsuchiya, K., Kurosu, T., Akino, T., Shih, S.C., Totsuka, Y., Klagsbrun, M., Shindoh, M., Hida, K., Isolated tumor endothelial cells maintain specific character during long-term culture. Biochem. Biophys. Res. Commun. 394:4 (2010), 947–954.
Akiyama, K., Ohga, N., Hida, Y., Kawamoto, T., Sadamoto, Y., Ishikawa, S., Maishi, N., Akino, T., Kondoh, M., Matsuda, A., Inoue, N., Shindoh, M., Hida, K., Tumor endothelial cells acquire drug resistance by MDR1 up-regulation via VEGF signaling in tumor microenvironment. Am. J. Pathol. 180:3 (2012), 1283–1293.
Morikawa, S., Baluk, P., Kaidoh, T., Haskell, A., Jain, R.K., McDonald, D.M., Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160:3 (2002), 985–1000.
Ohga, N., Ishikawa, S., Maishi, N., Akiyama, K., Hida, Y., Kawamoto, T., Sadamoto, Y., Osawa, T., Yamamoto, K., Kondoh, M., Ohmura, H., Shinohara, N., Nonomura, K., Shindoh, M., Hida, K., Heterogeneity of tumor endothelial cells: comparison between tumor endothelial cells isolated from high- and low-metastatic tumors. Am. J. Pathol. 180:3 (2012), 1294–1307.
Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Release 65:1-2 (2000), 271–284.
Fang, J., Nakamura, H., Maeda, H., The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63:3 (2011), 136–151.
Matsumura, Y., Maeda, H., A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46:12 Pt 1 (1986), 6387–6392.
Tredan, O., Galmarini, C.M., Patel, K., Tannock, I.F., Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 99:19 (2007), 1441–1454.
Heldin, C.H., Rubin, K., Pietras, K., Ostman, A., High interstitial fluid pressure − an obstacle in cancer therapy. Nat. Rev. Cancer 4:10 (2004), 806–813.
Eigentler, T.K., Caroli, U.M., Radny, P., Garbe, C., Palliative therapy of disseminated malignant melanoma: a systematic review of 41 randomised clinical trials. Lancet Oncol. 4:12 (2003), 748–759.
Kustermans, G., Piette, J., Legrand-Poels, S., Actin-targeting natural compounds as tools to study the role of actin cytoskeleton in signal transduction. Biochem. Pharmacol. 76:11 (2008), 1310–1322.
Huang, F.Y., Mei, W.L., Li, Y.N., Tan, G.H., Dai, H.F., Guo, J.L., Wang, H., Huang, Y.H., Zhao, H.G., Zhou, S.L., Li, L., Lin, Y.Y., The antitumour activities induced by pegylated liposomal cytochalasin D in murine models. Eur. J. Cancer 48:14 (2012), 2260–2269.
Liu, Z., Liu, D., Wang, L., Zhang, J., Zhang, N., Docetaxel-loaded pluronic p123 polymeric micelles: in vitro and in vivo evaluation. Int. J. Mol. Sci. 12:3 (2011), 1684–1696.
Parsonage, G., Filer, A.D., Haworth, O., Nash, G.B., Rainger, G.E., Salmon, M., Buckley, C.D., A stromal address code defined by fibroblasts. Trends Immunol. 26:3 (2005), 150–156.
Kalluri, R., Zeisberg, M., Fibroblasts in cancer. Nat. Rev. Cancer 6:5 (2006), 392–401.
Orimo, A., Weinberg, R.A., Heterogeneity of stromal fibroblasts in tumors. Cancer Biol. Ther. 6:4 (2007), 618–619.
Ishii, G., Ochiai, A., Neri, S., Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv. Drug Deliv. Rev. 99:Pt B (2016), 186–196.
Martin, M., Wei, H., Lu, T., Targeting microenvironment in cancer therapeutics. Oncotarget 7:32 (2016), 52575–52583.
Engle, S.J., Hoying, J.B., Boivin, G.P., Ormsby, I., Gartside, P.S., Doetschman, T., Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res. 59:14 (1999), 3379–3386.
McAnulty, R.J., Fibroblasts and myofibroblasts: their source, function and role in disease. Int. J. Biochem. Cell Biol. 39:4 (2007), 666–671.
Fearon, D.T., The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol. Res. 2:3 (2014), 187–193.
Kraman, M., Bambrough, P.J., Arnold, J.N., Roberts, E.W., Magiera, L., Jones, J.O., Gopinathan, A., Tuveson, D.A., Fearon, D.T., Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:6005 (2010), 827–830.
Shao, H., Kong, R., Ferrari, M.L., Radtke, F., Capobianco, A.J., Liu, Z.J., Notch1 pathway activity determines the regulatory role of cancer-associated fibroblasts in melanoma growth and invasion. PLoS One, 10(11), 2015, e0142815.
Thakur, V., Bedogni, B., The membrane tethered matrix metalloproteinase MT1-MMP at the forefront of melanoma cell invasion and metastasis. Pharmacol. Res. 111 (2016), 17–22.
Zhou, L., Yang, K., Andl, T., Wickett, R.R., Zhang, Y., Perspective of targeting cancer-associated fibroblasts in melanoma. J Cancer 6:8 (2015), 717–726.
Helal-Neto, E., Brandao-Costa, R.M., Saldanha-Gama, R., Ribeiro-Pereira, C., Midlej, V., Benchimol, M., Morandi, V., Barja-Fidalgo, C., Priming endothelial cells with a melanoma-derived extracellular matrix triggers the activation of αvβ3/VEGFR2 axis. J. Cell. Physiol. 231:11 (2016), 2464–2473.
Sakamoto, S., Kyprianou, N., Targeting anoikis resistance in prostate cancer metastasis. Mol. Aspects Med. 31:2 (2010), 205–214.
Miyamoto, H., Murakami, T., Tsuchida, K., Sugino, H., Miyake, H., Tashiro, S., Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas 28:1 (2004), 38–44.
Hu, Y., Yan, C., Mu, L., Huang, K., Li, X., Tao, D., Wu, Y., Qin, J., Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One, 10(5), 2015, e0125625.
Castells, M., Thibault, B., Delord, J.P., Couderc, B., Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int. J. Mol. Sci. 13:8 (2012), 9545–9571.
Flach, E.H., Rebecca, V.W., Herlyn, M., Smalley, K.S., Anderson, A.R., Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol. Pharm. 8:6 (2011), 2039–2049.
Berube, M., Talbot, M., Collin, C., Paquet-Bouchard, C., Germain, L., Guerin, S.L., Petitclerc, E., Role of the extracellular matrix proteins in the resistance of SP6.5 uveal melanoma cells toward cisplatin. Int. J. Oncol. 26:2 (2005), 405–413.
Boisvert-Adamo, K., Aplin, A.E., B-RAF and PI-3 kinase signaling protect melanoma cells from anoikis. Oncogene 25:35 (2006), 4848–4856.
Fukunaga-Kalabis, M., Martinez, G., Nguyen, T.K., Kim, D., Santiago-Walker, A., Roesch, A., Herlyn, M., Tenascin-C promotes melanoma progression by maintaining the ABCB5-positive side population. Oncogene 29:46 (2010), 6115–6124.
Hofmann, U.B., Westphal, J.R., Waas, E.T., Zendman, A.J., Cornelissen, I.M., Ruiter, D.J., van Muijen, G.N., Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression. Br. J. Cancer 81:5 (1999), 774–782.
Hofmann, U.B., Eggert, A.A., Blass, K., Brocker, E.B., Becker, J.C., Expression of matrix metalloproteinases in the microenvironment of spontaneous and experimental melanoma metastases reflects the requirements for tumor formation. Cancer Res. 63:23 (2003), 8221–8225.
Gatenby, R.A., Gillies, R.J., Why do cancers have high aerobic glycolysis?. Nat. Rev. Cancer 4:11 (2004), 891–899.
Riemann, A., Ihling, A., Thomas, J., Schneider, B., Thews, O., Gekle, M., Acidic environment activates inflammatory programs in fibroblasts via a cAMP-MAPK pathway. Biochim. Biophys. Acta 1853:2 (2015), 299–307.
Yabu, M., Shime, H., Hara, H., Saito, T., Matsumoto, M., Seya, T., Akazawa, T., Inoue, N., IL-23-dependent and −independent enhancement pathways of IL-17A production by lactic acid. Int. Immunol. 23:1 (2011), 29–41.
Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., Cova, A., Canese, R., Jachetti, E., Rossetti, M., Huber, V., Parmiani, G., Generoso, L., Santinami, M., Borghi, M., Fais, S., Bellone, M., Rivoltini, L., Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 72:11 (2012), 2746–2756.
Goetze, K., Walenta, S., Ksiazkiewicz, M., Kunz-Schughart, L.A., Mueller-Klieser, W., Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int. J. Oncol. 39:2 (2011), 453–463.
Rofstad, E.K., Mathiesen, B., Kindem, K., Galappathi, K., Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 66:13 (2006), 6699–6707.
Helmlinger, G., Sckell, A., Dellian, M., Forbes, N.S., Jain, R.K., Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin. Cancer Res. 8:4 (2002), 1284–1291.
Kato, Y., Ozawa, S., Miyamoto, C., Maehata, Y., Suzuki, A., Maeda, T., Baba, Y., Acidic extracellular microenvironment and cancer. Cancer Cell Int., 13(1), 2013, 89.
Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H.H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J.M., Sloane, B.F., Johnson, J., Gatenby, R.A., Gillies, R.J., Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73:5 (2013), 1524–1535.
Kato, Y., Ozawa, S., Tsukuda, M., Kubota, E., Miyazaki, K., St-Pierre, Y., Hata, R., Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma. FEBS J. 274:12 (2007), 3171–3183.
Wojtkowiak, J.W., Rothberg, J.M., Kumar, V., Schramm, K.J., Haller, E., Proemsey, J.B., Lloyd, M.C., Sloane, B.F., Gillies, R.J., Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res. 72:16 (2012), 3938–3947.
Kuphal, S., Winklmeier, A., Warnecke, C., Bosserhoff, A.K., Constitutive HIF-1 activity in malignant melanoma. Eur. J. Cancer 46:6 (2010), 1159–1169.
Hanna, S.C., Krishnan, B., Bailey, S.T., Moschos, S.J., Kuan, P.F., Shimamura, T., Osborne, L.D., Siegel, M.B., Duncan, L.M., O'Brien, E.T. 3rd, Superfine, R., Miller, C.R., Simon, M.C., Wong, K.K., Kim, W.Y., HIF1α and HIF2α independently activate SRC to promote melanoma metastases. J. Clin. Invest. 123:5 (2013), 2078–2093.
Nishisho, T., Hata, K., Nakanishi, M., Morita, Y., Sun-Wada, G.H., Wada, Y., Yasui, N., Yoneda, T., The a3 isoform vacuolar type H(+)-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol. Cancer Res. 9:7 (2011), 845–855.
De Milito, A., Canese, R., Marino, M.L., Borghi, M., Iero, M., Villa, A., Venturi, G., Lozupone, F., Iessi, E., Logozzi, M., Della Mina, P., Santinami, M., Rodolfo, M., Podo, F., Rivoltini, L., Fais, S., pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int. J. Cancer 127:1 (2010), 207–219.
Paradise, R.K., Lauffenburger, D.A., Van Vliet, K.J., Acidic extracellular pH promotes activation of integrin αvβ3. PLoS One, 6(1), 2011, e15746.
Krahling, H., Mally, S., Eble, J.A., Noel, J., Schwab, A., Stock, C., The glycocalyx maintains a cell surface pH nanoenvironment crucial for integrin-mediated migration of human melanoma cells. Pflugers Arch. 458:6 (2009), 1069–1083.
Ludwig, F.T., Schwab, A., Stock, C., The Na+/H+ −exchanger (NHE1) generates pH nanodomains at focal adhesions. J. Cell. Physiol. 228:6 (2013), 1351–1358.
Scheel, C., Weinberg, R.A., Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol. 22:5–6 (2012), 396–403.
Peppicelli, S., Bianchini, F., Torre, E., Calorini, L., Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clin. Exp. Metastasis 31:4 (2014), 423–433.
Wojtkowiak, J.W., Verduzco, D., Schramm, K.J., Gillies, R.J., Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm. 8:6 (2011), 2032–2038.
Taylor, S., Spugnini, E.P., Assaraf, Y.G., Azzarito, T., Rauch, C., Fais, S., Microenvironment acidity as a major determinant of tumor chemoresistance: proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist. Updat. 23 (2015), 69–78.
Federici, C., Petrucci, F., Caimi, S., Cesolini, A., Logozzi, M., Borghi, M., D'Ilio, S., Lugini, L., Violante, N., Azzarito, T., Majorani, C., Brambilla, D., Fais, S., Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One, 9(2), 2014, e88193.
Chen, J.L., Lucas, J.E., Schroeder, T., Mori, S., Wu, J., Nevins, J., Dewhirst, M., West, M., Chi, J.T., The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet., 4(12), 2008, e1000293.
Thews, O., Gassner, B., Kelleher, D.K., Schwerdt, G., Gekle, M., Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia 8:2 (2006), 143–152.
Sampathkumar, K., Arulkumar, S., Ramalingam, M., Advances in stimuli responsive nanobiomaterials for cancer therapy. J. Biomed. Nanotechnol. 10:3 (2014), 367–382.
Zorko, M., Langel, U., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev. 57:4 (2005), 529–545.
Zhang, W., Song, J., Zhang, B., Liu, L., Wang, K., Wang, R., Design of acid-activated cell penetrating peptide for delivery of active molecules into cancer cells. Bioconjug. Chem. 22:7 (2011), 1410–1415.
Fridman, W.H., Pages, F., Sautes-Fridman, C., Galon, J., The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12:4 (2012), 298–306.
Mlecnik, B., Tosolini, M., Charoentong, P., Kirilovsky, A., Bindea, G., Berger, A., Camus, M., Gillard, M., Bruneval, P., Fridman, W.H., Pages, F., Trajanoski, Z., Galon, J., Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 138:4 (2010), 1429–1440.
Buckanovich, R.J., Facciabene, A., Kim, S., Benencia, F., Sasaroli, D., Balint, K., Katsaros, D., O'Brien-Jenkins, A., Gimotty, P.A., Coukos, G., Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14:1 (2008), 28–36.
Piras, F., Colombari, R., Minerba, L., Murtas, D., Floris, C., Maxia, C., Corbu, A., Perra, M.T., Sirigu, P., The predictive value of CD8, CD4, CD68, and human leukocyte antigen-D-related cells in the prognosis of cutaneous malignant melanoma with vertical growth phase. Cancer 104:6 (2005), 1246–1254.
Hakansson, A., Gustafsson, B., Krysander, L., Hjelmqvist, B., Rettrup, B., Hakansson, L., Biochemotherapy of metastatic malignant melanoma. Predictive value of tumour-infiltrating lymphocytes. Br. J. Cancer 85:12 (2001), 1871–1877.
Miracco, C., Mourmouras, V., Biagioli, M., Rubegni, P., Mannucci, S., Monciatti, I., Cosci, E., Tosi, P., Luzi, P., Utility of tumour-infiltrating CD25+FOXP3+ regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma. Oncol. Rep. 18:5 (2007), 1115–1122.
Mougiakakos, D., Johansson, C.C., Trocme, E., All-Ericsson, C., Economou, M.A., Larsson, O., Seregard, S., Kiessling, R., Intratumoral forkhead box P3-positive regulatory T cells predict poor survival in cyclooxygenase-2-positive uveal melanoma. Cancer 116:9 (2010), 2224–2233.
Sumimoto, H., Imabayashi, F., Iwata, T., Kawakami, Y., The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 203:7 (2006), 1651–1656.
Larmonier, N., Marron, M., Zeng, Y., Cantrell, J., Romanoski, A., Sepassi, M., Thompson, S., Chen, X., Andreansky, S., Katsanis, E., Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol. Immunother. 56:1 (2007), 48–59.
Pollard, J.W., Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4:1 (2004), 71–78.
Solinas, G., Germano, G., Mantovani, A., Allavena, P., Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukoc. Biol. 86:5 (2009), 1065–1073.
Jimenez-Garcia, L., Herranz, S., Higueras, M.A., Luque, A., Hortelano, S., Tumor suppressor ARF regulates tissue microenvironment and tumor growth through modulation of macrophage polarization. Oncotarget 7:41 (2016), 66835–66850.
Tarhini, A., Lo, E., Minor, D.R., Releasing the brake on the immune system: ipilimumab in melanoma and other tumors. Cancer Biother. Radiopharm. 25:6 (2010), 601–613.
Jazirehi, A.R., Lim, A., Dinh, T., PD-1 inhibition and treatment of advanced melanoma-role of pembrolizumab. Am. J. Cancer Res. 6:10 (2016), 2117–2128.
Frederick, D.T., Piris, A., Cogdill, A.P., Cooper, Z.A., Lezcano, C., Ferrone, C.R., Mitra, D., Boni, A., Newton, L.P., Liu, C., Peng, W., Sullivan, R.J., Lawrence, D.P., Hodi, F.S., Overwijk, W.W., Lizee, G., Murphy, G.F., Hwu, P., Flaherty, K.T., Fisher, D.E., Wargo, J.A., BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19:5 (2013), 1225–1231.
Cooper, Z.A., Frederick, D.T., Juneja, V.R., Sullivan, R.J., Lawrence, D.P., Piris, A., Sharpe, A.H., Fisher, D.E., Flaherty, K.T., Wargo, J.A., BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology, 2(10), 2013, e26615.
Della Vittoria Scarpati, G., Fusciello, C., Perri, F., Sabbatino, F., Ferrone, S., Carlomagno, C., Pepe, S., Ipilimumab in the treatment of metastatic melanoma: management of adverse events. Onco Targets Ther. 7 (2014), 203–209.
Zhuang, X., Wu, T., Zhao, Y., Hu, X., Bao, Y., Guo, Y., Song, Q., Li, G., Tan, S., Zhang, Z., Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2 Kb and H-2Db-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. J. Control. Release 228 (2016), 26–37.
Guo, Y., Wang, D., Song, Q., Wu, T., Zhuang, X., Bao, Y., Kong, M., Qi, Y., Tan, S., Zhang, Z., Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 9:7 (2015), 6918–6933.
Li, S.Y., Liu, Y., Xu, C.F., Shen, S., Sun, R., Du, X.J., Xia, J.X., Zhu, Y.H., Wang, J., Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J. Control Release 231 (2016), 17–28.
Choi, B., Moon, H., Hong, S.J., Shin, C., Do, Y., Ryu, S., Kang, S., Effective delivery of antigen-encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic t cell activation and tumor rejection. ACS Nano 10:8 (2016), 7339–7350.
Goldinger, S.M., Dummer, R., Baumgaertner, P., Mihic-Probst, D., Schwarz, K., Hammann-Haenni, A., Willers, J., Geldhof, C., Prior, J.O., Kundig, T.M., Michielin, O., Bachmann, M.F., Speiser, D.E., Nano-particle vaccination combined with TLR-7 and −9 ligands triggers memory and effector CD8+ T-cell responses in melanoma patients. Eur. J. Immunol. 42:11 (2012), 3049–3061.
Amin, A., Lawson, D.H., Salama, A.K., Koon, H.B., Guthrie, T. Jr., Thomas, S.S., O'Day, S.J., Shaheen, M.F., Zhang, B., Francis, S., Hodi, F.S., Phase II study of vemurafenib followed by ipilimumab in patients with previously untreated BRAF-mutated metastatic melanoma. J. Immunother. Cancer, 4, 2016, 44.
Hodi, F.S., Chesney, J., Pavlick, A.C., Robert, C., Grossmann, K.F., McDermott, D.F., Linette, G.P., Meyer, N., Giguere, J.K., Agarwala, S.S., Shaheen, M., Ernstoff, M.S., Minor, D.R., Salama, A.K., Taylor, M.H., Ott, P.A., Horak, C., Gagnier, P., Jiang, J., Wolchok, J.D., Postow, M.A., Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17:11 (2016), 1558–1568.
Maio, M., Grob, J.J., Aamdal, S., Bondarenko, I., Robert, C., Thomas, L., Garbe, C., Chiarion-Sileni, V., Testori, A., Chen, T.T., Tschaika, M., Wolchok, J.D., Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J. Clin. Oncol. 33:10 (2015), 1191–1196.
Warenius, H.M., Galfre, G., Bleehen, N.M., Milstein, C., Attempted targeting of a monoclonal antibody in a human tumour xenograft system. Eur. J. Cancer Clin. Oncol. 17:9 (1981), 1009–1015.
Mao, Z.G., Jiang, C.C., Yang, F., Thorne, R.F., Hersey, P., Zhang, X.D., TRAIL-induced apoptosis of human melanoma cells involves activation of caspase-4. Apoptosis 15:10 (2010), 1211–1222.
Eberle, J., Fecker, L.F., Hossini, A.M., Kurbanov, B.M., Fechner, H., Apoptosis pathways and oncolytic adenoviral vectors: promising targets and tools to overcome therapy resistance of malignant melanoma. Exp. Dermatol. 17:1 (2008), 1–11.
Schmidt, P., Kopecky, C., Hombach, A., Zigrino, P., Mauch, C., Abken, H., Eradication of melanomas by targeted elimination of a minor subset of tumor cells. Proc. Natl. Acad. Sci. U. S. A. 108:6 (2011), 2474–2479.
Fang, D., Nguyen, T.K., Leishear, K., Finko, R., Kulp, A.N., Hotz, S., Van Belle, P.A., Xu, X., Elder, D.E., Herlyn, M., A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65:20 (2005), 9328–9337.
Song, H., Su, X., Yang, K., Niu, F., Li, J., Song, J., Chen, H., Li, B., Li, W., Qian, W., Cao, X., Guo, S., Dai, J., Feng, S.S., Guo, Y., Yin, C., Gao, J., CD20 antibody-conjugated immunoliposomes for targeted chemotherapy of melanoma cancer initiating cells. J. Biomed. Nanotechnol. 11:11 (2015), 1927–1946.
Hersey, P., Jamal, O., Henderson, C., Zardawi, I., D'Alessandro, G., Expression of the gangliosides GM3, GD3 and GD2 in tissue sections of normal skin, naevi, primary and metastatic melanoma. Int. J. Cancer 41:3 (1988), 336–343.
Pastorino, F., Brignole, C., Marimpietri, D., Pagnan, G., Morando, A., Ribatti, D., Semple, S.C., Gambini, C., Allen, T.M., Ponzoni, M., Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. Clin. Cancer Res. 9:12 (2003), 4595–4605.
Koren, E., Torchilin, V.P., Cell-penetrating peptides: breaking through to the other side. Trends Mol. Med. 18:7 (2012), 385–393.
Kramer, R.H., Vu, M., Cheng, Y.F., Ramos, D.M., Integrin expression in malignant melanoma. Cancer Metastasis Rev. 10:1 (1991), 49–59.
Kluza, E., Jacobs, I., Hectors, S.J., Mayo, K.H., Griffioen, A.W., Strijkers, G.J., Nicolay, K., Dual-targeting of αvβ3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo. J. Control Release 158:2 (2012), 207–214.
Tatro, J.B., Wen, Z., Entwistle, M.L., Atkins, M.B., Smith, T.J., Reichlin, S., Murphy, J.R., Interaction of an alpha-melanocyte-stimulating hormone-diphtheria toxin fusion protein with melanotropin receptors in human melanoma metastases. Cancer Res. 52:9 (1992), 2545–2548.
Miao, Y., Whitener, D., Feng, W., Owen, N.K., Chen, J., Quinn, T.P., Evaluation of the human melanoma targeting properties of radiolabeled alpha-melanocyte stimulating hormone peptide analogues. Bioconjug. Chem. 14:6 (2003), 1177–1184.
Liu, L., Xu, J., Yang, J., Feng, C., Miao, Y., Imaging human melanoma using a novel Tc-99m-labeled lactam bridge-cyclized alpha-MSH peptide. Bioorg. Med. Chem. Lett. 26:19 (2016), 4724–4728.
Vannucci, L., Falvo, E., Failla, C.M., Carbo, M., Fornara, M., Canese, R., Cecchetti, S., Rajsiglova, L., Stakheev, D., Krizan, J., Boffi, A., Carpinelli, G., Morea, V., Ceci, P., In vivo targeting of cutaneous melanoma using an melanoma stimulating hormone-engineered human protein cage with fluorophore and magnetic resonance imaging tracers. J. Biomed. Nanotechnol. 11:1 (2015), 81–92.
Gupta, Y., Jain, A., Jain, P., Jain, S.K., Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J. Drug Target 15:3 (2007), 231–240.
Li, M., Liu, Y., Feng, L., Liu, F., Zhang, L., Zhang, N., Polymeric complex micelles with double drug-loading strategies for folate-mediated paclitaxel delivery. Colloids Surf. B Biointerfaces 131 (2015), 191–201.
Taymouri, S., Varshosaz, J., Hassanzadeh, F., Haghjooy Javanmard, S., Dana, N., Optimisation of processing variables effective on self-assembly of folate targeted Synpronic-based micelles for docetaxel delivery in melanoma cells. IET Nanobiotechnol. 9:5 (2015), 306–313.
Gabizon, A., Horowitz, A.T., Goren, D., Tzemach, D., Mandelbaum-Shavit, F., Qazen, M.M., Zalipsky, S., Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug. Chem. 10:2 (1999), 289–298.
Ganapathy, V., Thangaraju, M., Prasad, P.D., Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol. Ther. 121:1 (2009), 29–40.
Ferreira, L.M., Cancer metabolism: the Warburg effect today. Exp. Mol. Pathol. 89:3 (2010), 372–380.
Chapman, P.B., Mechanisms of resistance to RAF inhibition in melanomas harboring a BRAF mutation. Am. Soc. Clin. Oncol. Educ. Book, 2013.
Hersh, E.M., O'Day, S.J., Powderly, J., Khan, K.D., Pavlick, A.C., Cranmer, L.D., Samlowski, W.E., Nichol, G.M., Yellin, M.J., Weber, J.S., A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naive patients with advanced melanoma. Invest. New Drugs 29:3 (2011), 489–498.